Advertisement

Lithology and Mineral Resources

, Volume 38, Issue 2, pp 120–153 | Cite as

Formation of Mud-Volcanic Fluids in Taman (Russia) and Kakhetia (Georgia): Evidence from Boron Isotopes

  • V. Yu. Lavrushin
  • A. Kopf
  • A. Deyhle
  • M. I. Stepanets
Article

Abstract

Temperatures of the formation of mud-volcanic waters are determined based on concentrations of some temperature-dependent components (Na–Li, Mg–Li). Estimates obtained for the Taman and Kakhetia regions are similar and range from ∼ 45 to ∼170°С, which correspond to depths of ∼1–4.5 km. The calculated temperatures correlate with the chemical (Li, Rb, Cs, Sr, Ba, B, I, and HCO3) composition of water and δ13С (СО2) and δ13С (CH4) values in spontaneous gases. The isotope values indicate that mechanisms of the formation of δ13С-rich gases, i.e., gases with high δ13С values (up to +16.0‰ in СО2 and –23.4‰ in CH4) in mud-volcanic systems of Taman and Kakhetia are governed by fluid-generation temperatures rather than the supply of abyssal gases. The δ11В value was determined for the first time in mud-volcanic products of the Caucasus region. This value ranges from +22.5 to +39.4‰ in the volcanic water of Georgia, from –1.2 to +7.4‰ in the clayey pulp of Georgia, and from –7.6 to +13.2‰ in the clayey pulp of Taman. It is shown that the δ11В value in clay correlates with the fluid-generation temperature and δ11В correlates with δ13С in carbon-bearing gases. These correlations probably testify to the formation of different phases of mud-volcanic emanations in a single geochemical system and suggest the crucial role of temperature in the development of isotope-geochemical features.

Keywords

Clay Russia Boron Crucial Role Sedimentology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Adamiya, Sh.A., Structural Features of the Earth's Crust and Upper Mantle of the Caucasus and Its Relation to Recent Structures, Geofizicheskie polya i stroenie zemnoi kory Zakavkaz'ya (Geophysical Fields and Structure of the Earth's Crust in Transcaucasia), Moscow: Nauka, 1985, pp. 151–169.Google Scholar
  2. Adamiya, Sh.A., Gabuniya, G.L., Kuteliya, Z.A., Khutsishvili, O.D., and Tsimakuridze, G.K., Characteristic Features of the Caucasus, Geodinamika Kavkaza (Geodynamics of the Caucasus), Moscow: Nauka, 1989, pp. 3–15.Google Scholar
  3. Alekseev, V.A., Alekseeva, N.G., and Voitov G I., New Data on the Isotopic Composition of Carbon in Carbonaceous Gases of Some Mud Volcanoes of the Taman Mud-Volcanic Province, Dokl. Akad. Nauk, 2000, vol. 371, no.2, pp. 227–230.Google Scholar
  4. Buachidze, G.I. and Mkheidze, B.S., Prirodnye gazy Gruzii (Natural Gases of Georgia), Tbilisi: Metsniereba, 1989.Google Scholar
  5. Cantanzaro, E.J., Champion, C.E., Garner, E.L., Marinenko, G., Sappenfield, K.M., and Shields, W.R., Standard Reference Material: Boric Acid, Isotopic, and Assay Standard Reference Materials. Nat. Bur. Stand. (U.S.), Spec. Publ., 1970, no. 260-17.Google Scholar
  6. Chelidze, T.L., Thermodynamic Conditions and Petrophysical Models of Crustal Sections in the Caucasusus, Struktura zemnoi kory territorii Gruzii po seismicheskim i magnitnym dannym (Structure of the Earth's Crust in the Georgian Territory Based on Seismic and Magnetic Data), Tbilisi: Metsniereba, 1983, vol. L1, pp. 97–115.Google Scholar
  7. Colten-Bradley, V.A., Role of Pressure in Smectite Dehydration–Effects on Geopressure and Smectite-to-Illite Transformation, AAPG Bull., 1987, no. 71, pp. 1414–1427.Google Scholar
  8. Drits, V.A. and Kossovskaya, A.G., Glinistye mineraly: smektity, smeshannosloinye obrazovaniya (Clay Minerals: Smectites and Mixed-Layer Formations), Moscow: Nauka, 1990.Google Scholar
  9. Fouillac, C. and Michard, G., Sodium/Litium Ratio in Water Applied to Geothermometry of Geothermal Reservoirs, Geochemics, 1981, vol. 10, pp. 55–70.Google Scholar
  10. Fournier, R.O. and Trusdell, A.H., An Empirical Na–K–Ca Chemical Geothermometer for Natural Waters, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 1255–1275.Google Scholar
  11. Fournier, R.O. and Potter, R.W., A Magnesium Correction for the Na–K–Ca Geothermometer, Geochim. Cosmochim. Acta, 1979, vol. 43, pp. 1543–1550.Google Scholar
  12. Galimov, E.M., Geokhimiya stabil'nykh izotopov ugleroda (Geochemistry of Stable Carbon Isotopes), Moscow: Nedra, 1968.Google Scholar
  13. Gemp, S.D. and Lagunova, I.A., Relation between Mud Volcanism and Endogenic Processes Vliyanie endogennykh faktorov na formirovanie zalezhei nefti i gaza (Influence of Endogenic Factors on the Formation of Oil and Gas Pools), Leningrad: Vses. Nauchno-Issled. Geol.-Razved. Inst., 1978, pp. 75–97.Google Scholar
  14. Gemp, S.D., Dubrova, N.V., Nesmelova, Z.N., Beketov, V.M., and Khod'kova, I.A., Isotopic Composition of Carbon-bearing Gases (CN4 and CO2) from Mud Volcanoes of the Kerch– Taman Region, Geokhimiya, 1970, no. 2, pp. 243–247.Google Scholar
  15. Gemp, S.D., Lagunova, I.A., and Nesmelova, Z.N., Specific Features of the Formation of Gas Composition of Mud Volcanoes, Geokhimiya, 1979, no. 12, pp. 1859–1867.Google Scholar
  16. Gulyaeva, L.A., Boron from Mud Volcanoes, Rezul'taty issledovaniya gryazevykh vulkanov Krymsko-Kavkazskoi geologicheskoi provintsii (Results of the Study of Mud Volcanoes in the Crimea–Caucasus Geological Province), Moscow: Akad. Nauk SSSR, 1939, pp. 103–123.Google Scholar
  17. Ioseliani, M.S. and Diasamidze, Sh.P., Construction of Seismic Model for the Earth's Crust in the Intermontane Depression of Georgia, Struktura zemnoi kory territorii Gruzii po seismicheskim i magnitnym dannym (Structure of the Earth's Crust in the Georgian Territory Based on Seismic and Magnetic Data), Tbilisi: Metsniereba, 1983, pp. 34–42.Google Scholar
  18. Ishikawa, T. and Nakazawa, T., Boron Isotope Systematics of Marine Sediments, Earth Planet. Sci. Lett., 1993, vol. 117, pp. 567–580.Google Scholar
  19. Ivanov, V.V., Ekologicheskaya geokhimiya elementov (Ecological Geochemistry of Elements), part 6: Rare f-Elements, Moscow: Ekologiya, 1997.Google Scholar
  20. Kharaka, Y.K. and Mariner, R.H., Chemical Geothermomethers and Their Application to Formation Waters from Sedimentary Basins, Thermal History of Sedimentary Basins, Methods and Case Histories, New York: Springer, 1989, pp. 99–117.Google Scholar
  21. Kholodov, V.N., Mud Volcanoes, Their Distribution Regularities, and Genesis: Communication 2. Geological–Geochemical Features and Formation Model, Litol. Polezn. Iskop., 2002, no. 4, pp. 339–358.Google Scholar
  22. Kholodov, V.N., Postsedimentatsionnye preobrazovaniya v elizionnykh basseinakh (Postsedimentary Transformations of Elisional Basins), Moscow: Nauka, 1983.Google Scholar
  23. Kholodov, V.N., Role of Sand Diapirism in the Interpretation of Mud Volcanoes, Litol. Polezn. Iskop., 1987, no. 4, pp. 12–27.Google Scholar
  24. Kopp, M.L., Genetic Relations of Clay Diapirs, Mud Volcanoes, and Horizontal Compression Structures (Evidence from the Alyat Ridge, Southeastern Caucasus), Geotekton-ika, 1985, no. 3, pp. 62–74.Google Scholar
  25. Koronovskii, N.V., The Agrakhan–Tbilisi–Levant Sinistral Strike-Slip Zone: The Most Important Structure of the Caucasus Region, Dokl. Akad. Nauk, 1994, vol. 337, no.1, pp. 75–78.Google Scholar
  26. Krasnopevtseva, G.V., Rezanov, I.A., and Shevchenko, V.I., Deep Structure, Seismic Boundaries, and Crustal Evolution in the Caucasus, Stroenie zemnoi kory i verkhnei mantii po dannym seismicheskikh issledovanii (Structure of the Earth's Crust and Upper Mantle Based on Seismic Study Data), Kiev: Nauk. Dumka, 1977, pp. 203–216.Google Scholar
  27. Lagunova, I.A., Genesis of CO2 in Gases from Mud Volcanoes of the Kerch–Taman Region, Geokhimiya, 1974, no. 11, pp. 1711–1716.Google Scholar
  28. Lagunova, I.A., Genesis of Boron in Waters of Mud Volcanoes, Sov. Geol., 1975, no. 1, pp. 147–152.Google Scholar
  29. Lagunova, I.A. and Gemp, S.D., Hydrodynamic Features of Mud Volcanoes, Sov. Geol., 1978, no. 8, pp. 108–125.Google Scholar
  30. Lavrushin, V.Yu., Polyak, B.G., Prasolov, E.M., and Kamenskii, I.L., Sources of Material in Mud Volcano Products (Based on Isotope, Hydrochemical, and Geological Data), Litol. Polezn. Iskop., 1996, no. 6, pp. 625–647.Google Scholar
  31. Lavrushin, V.Yu., Polyak, B.G., Pokrovskii, B.G., Buachidze, G.I., and Kamenskii, I.L., New Data on Helium and Carbon Isotopes in Gases from Mud Volcanoes in Eastern Georgia, XV simpozium po geokhimii izotopov imeni ak. A.P. Vinogradova (XV Vinogradov Symp. on Isotope Geochemistry), Moscow: Inst. Geokhim. Analit. Khim. Ross. Akad. Nauk, 1998, pp. 151–152.Google Scholar
  32. Nakamura, E., Ishikawa, T., Bick, J.L., and Allegre, C.J., Precise Boron Istopic Analysis of Natural Rock Samples Using a Boron-Mannitol Complex, Chem. Geol. Isot. Geosci. Sect., 1992, vol. 94, pp. 193–204.Google Scholar
  33. Philip, H., Cisternas, A., Gvishniani, A., and Gorshkov, A., The Caucasus: An Actual Example of the Initial Stages of Continental Collision, Tectonophysics, 1989, vol. 161, pp. 1–21.Google Scholar
  34. Prasolov, E.M., Izotopnaya geokhimiya i proiskhozhdenie prirodnykh gazov (Isotope Geochemistry and Origin of Natural Gases), Leningrad: Nedra, 1990.Google Scholar
  35. Prasolov, E.M. and Lobkov, V.A., Formation Conditions and Migration of Methane (Based on Carbon Isotopic Composition), Geokhimiya, 1977, no. 1, pp. 122–135.Google Scholar
  36. Radzhabov, M.M., Osipova, I.B., Armenakyan, K.Kh., Ioseliani, M.S., et al., Wave Fields and Deep Structure of the Caucasus Based on Seismic Data, Geofizicheskie polya i stroenie zemnoi kory Zakavkaz'ya (Geophysical Fields and Structure of the Earth's Crust in Transcaucasia), Moscow: Nauka, 1985, pp. 5–33.Google Scholar
  37. Rose, E.F., Chaussidon, M., and France-Lanord, C., Fractionation of Boron Isotopes during Erosion Processes: The Example of Himalayan Rivers, Geochim. Cosmochim. Acta, 2000, vol. 64, no.3, pp. 397–408.Google Scholar
  38. Shardarov, A.N., Malyshek, V.T., and Peklo, V.P., Roots of Mud Volcanoes in the Taman Peninsula, Geologicheskii sbornik (Geological Collection), Moscow: Gostoptekhizdat, 1962, issue 10, pp. 53–66.Google Scholar
  39. Shnyukov, E.F., Sobolevskii, Yu.V., Gnatenko, G.I., Naumenko, P.I., and Kutnii, V.A., Gryazevye vulkany Kerchen-sko-Tamanskoi oblasti (atlas) (Mud Volcanoes of the Kerch– Taman Region: An Atlas), Kiev: Nauk. Dumka, 1986.Google Scholar
  40. Spivack, A.J. and Edmond, J.M., Boron Isotope Exchange between Seawater and Oceanic Crust, Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 1033–1043.Google Scholar
  41. Spivack, A.J., Palmer, M.R., and Edmond, J.M., The Sedimentary Cycle of the Boron Isotopes, Geochim. Cosmochim. Acta, 1987, vol. 51, no.7, pp. 1939–1949.Google Scholar
  42. Valyaev, B.M., Grinchenko, Yu.I., Erokhin, V.E., Prokhorov, V.S., and Titkov, G.A., Isotopic Signature of Gases from Mud Volcanoes, Litol. Polezn. Iskop., 1985, no. 1, pp. 72–87.Google Scholar
  43. Vengosh, A., Gieskes, J., and Mahn, C., New Evidence for the Origin of Hypersaline Pore Fluids in the Mediterranean Basin, Chem. Geol., 2000, vol. 163, pp. 287–298.Google Scholar
  44. Voitov, G.I., Chemical and Isotope-Carbon Instabilities in Gryphon Gases of Mud Volcanoes (Evidence from the Southern Caspian and Taman Mud-Volcanic Provinces), Geokhimiya, 2001, no. 4, pp. 422–433.Google Scholar
  45. Williams, L.B., Hervig, R.L., and Hutcheon, I., Boron Isotope Geochemistry during Diagenesis. Part II. Applications to Organic-Rich Sediments, Geochim. Cosmochim. Acta, 2001, vol. 65, no.11, pp. 1783–1794.Google Scholar
  46. Yakubov, A.A., Grigor'yants, B.V., Aliev, A.D., et al., Gryazevoi vulkanizm Sovetskogo Soyuza i ego svyaz' s nefte-gazonosnost'yu (Mud Volcanism in the Soviet Union and Its Relation to Oil and Gas Potential), Baku: ELM, 1980.Google Scholar
  47. Yanovskaya, T.S., Voitov, G.I., Karpov, V.P., Osika, D.G., and Osika, L.D., Temporal Instabilities of Chemical and Isotopic Compositions of Gases from Mineral Springs in Adzhi (Dagestan Wedge), Dokl. Akad. Nauk SSSR, 1992, vol. 324, no.1, pp. 81–86.Google Scholar
  48. You, C.F., Chan, L.H., Spivack, A.J., and Gieskes, J.M., Lithium, Boron, and Their Isotopes in Sediments and Pore Waters of Ocean Drilling Program Site 808, Nankai Trough: Implications for Fluid Expulsion in Accretionary Prisms, Geology, 1995, vol. 23, no.1, pp. 37–40.Google Scholar
  49. You, C.-F., Spivack, A.J., Gieskes, J.M., Martin, J.B., and Davisson, M.L., Boron Contents and Isotopic Compositions in Pore Waters: A New Approach to Determine Temperature-Induced Artifacts-Geochemical Implications, Mar. Geol., 1996, vol. 129, pp. 351–361.Google Scholar
  50. Zonenshain, L.P. and Le Pichon, X., Deep Basins of the Black Sea and Caspian Sea as Remnants of Mesozoic Back-Arc Basins, Tectonophysics, 1986, vol. 123, pp. 181–211.Google Scholar
  51. Zuleger, E. and Erzinger, J., Determination of Boron Isotopes using Negative Thermal Ionization Mass Spectrometry, Finnigan Isotope Mass Spectrometry, Appl. Rep., 1991.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2003

Authors and Affiliations

  • V. Yu. Lavrushin
    • 1
  • A. Kopf
    • 2
  • A. Deyhle
    • 2
  • M. I. Stepanets
    • 1
  1. 1.Geological Institute (GIN)Russian Academy of SciencesMoscowRussia
  2. 2.Research Center for Marine Geosciences (GEOMAR), Christian-AlbrechtsUniversity of KielKielGermany

Personalised recommendations