Skip to main content
Log in

Bacillus subtilis CPx-type ATPases: Characterization of Cd, Zn, Co and Cu efflux systems

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Metal ion homeostasis requires the balanced expression of metal ion uptake systems, when metals are limiting, and corresponding efflux or storage systems, when metals are in excess. CPx-type ATPases are a family of membrane-bound transporters that often function to export toxic metals from cells. The Bacillus subtilis genome encodes three CPx-type ATPases: zosA, yvgW and yvgX. We demonstrate that yvgW and yvgX encode CadA and CopA, respectively, and that these genes function in metal ion resistance. A cadA mutant was sensitive to Cd(II), Zn(II) and Co(II), but not copper. Transcription of cadA initiates from a single, σA-type promoter and was induced by Cd(II), Zn(II), and Co(II). The adjacent copZA operon is expressed as a bicistronic transcript from a σA-type promoter and is selectively induced by copper. Mutation of either copZ, encoding a metallochaperone, or copA sensitizes the cells to copper but not to other metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelsen KB, Palmgren MG. 1998 Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46, 84–101.

    Google Scholar 

  • Banci L, Bertini I, Del Conte R, Markey J, Ruiz-Duenas FJ. 2001 Copper trafficking: The solution structure of Bacillus subtilis CopZ. Biochemistry 40, 15660–15668.

    Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S, D'Onofrio M, Gonnelli L, Marhuenda-Egea FC, Ruiz-Duenas FJ. 2002 Solution structure of the N-terminal domain of a potential copper-translocating Ptype ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. J Mol Biol 317, 415–429.

    Google Scholar 

  • Binet MR, Poole RK. 2000 Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. FEBS Lett 473, 67–70.

    Google Scholar 

  • Brocklehurst KR, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP. 1999 ZntR is a Zn(II)-responsive MerRlike transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31, 893–902.

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW. 2000 Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45, 198–207.

    Google Scholar 

  • Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW. 1993 The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5, 327–337.

    Google Scholar 

  • Busenlehner LS, Weng TC, Penner-Hahn JE, Giedroc DP. 2002 Elucidation of primary (alpha(3)N) and vestigial (alpha(5)) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins. J Mol Biol 319, 685–701.

    Google Scholar 

  • Chen L, James LP, Helmann JD. 1993 Metalloregulation in Bacillus subtilis: Isolation and characterization of two genes differentially repressed by metal ions. J Bacteriol 175, 5428–5437.

    Google Scholar 

  • Cobine PA, George GN, Jones CE, Wickramasinghe WA, M. Solioz M, Dameron CT. 2002 Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: Metal coordination environments and protein interactions. Biochemistry 41, 5822–5829.

    Google Scholar 

  • Cutting SM, Vander Horn PB. 1990 Genetic analysis. In Harwood CR & Cutting M, eds. Molecular biological methods for Bacillus. Chichester: John Wiley and Sons; 27–74.

    Google Scholar 

  • Fu D, Beeler TJ, Dunn TM. 1995 Sequence, mapping and disruption of ccc2, a gene that cross-complements the Ca(2+)-sensitive phenotype of csg1 mutants and encodes a P-type ATPase belonging to the Cu(2+)-ATPase subfamily. Yeast 11, 283–292. Gaballa A, Helmann JD. 1998 Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180, 5815–5821.

    Google Scholar 

  • Gaballa A, Helmann JD. 2002 A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol Microbiol 45, 997–1005.

    Google Scholar 

  • Ge Z, Hiratsuka K, Taylor DE. 1995 Nucleotide sequence and mutational analysis indicate that two Helicobacter pylori genes encode a P-type ATPase and a cation-binding protein associated with copper transport. Mol Microbiol 15, 97–106.

    Google Scholar 

  • Helmann JD, Wu MW, Kobel PA, Gamo F, Wilson M, Morshedi MM, Navre M, Paddon C. 2001 The global transcription response of Bacillus subtilis to heat shock. J Bacteriol 183, 7318–7328.

    Google Scholar 

  • Herrmann L, Schwan D, Garner R, Mobley HL, Haas R, Schafer KP, Melchers K. 1999 Helicobacter pylori cadA encodes an essential Cd(II)-Zn(II)-Co(II) resistance factor influencing urease activity. Mol Microbiol 33, 524–536.

    Google Scholar 

  • Huang X, Helmann JD. 1998 Identification of target promoters for the Bacillus subtilis sigma X factor using a consensus-directed search. J Mol Biol 279, 165–173.

    Google Scholar 

  • Huang X, Decatur A, Sorokin A, Helmann JD. 1997 The Bacillus subtilis sigma(x) protein is an extracytoplasmic function sigma factor contributing to survival at high temperature. J Bacteriol 179, 2915–2921.

    Google Scholar 

  • Kanamaru K, Kashiwagi S, Mizuno T. 1994 A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Mol Microbiol 13, 369–377.

    Google Scholar 

  • Lee SW, Glickmann E, Cooksey DA. 2001 Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67, 1437–1444.

    Google Scholar 

  • Miller JH. 1972 Experiments in molecular genetics. Cold Spring Harbor: Cold Spring Harbor Laboratory; 352–355.

    Google Scholar 

  • Nies DH. 1999 Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51, 730–750.

    Google Scholar 

  • Nies DH, Silver S. 1995 Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14, 186–199.

    Google Scholar 

  • Outten CE, O'Halloran TV. 2001 Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492.

    Google Scholar 

  • Outten FW, Outten CE, Hale J, O'Halloran TV 2000 Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, CueR. J Biol Chem 275, 31024–31029.

    Google Scholar 

  • Palmgren MG, Axelsen KB. 1998 Evolution of P-type ATPases. Biochim Biophys Acta 1365, 37–45.

    Google Scholar 

  • Perego M. 1993 Integrational vectors for genetic manipulation in Bacillus subtilis. In Sonenshein AL, Hoch JA & Losick R., eds. Bacillus subtilis and other gram-positive bacteria: Biochemistry, physiology, and molecular genetics. Washington D.C.: American Society for Microbiology; 615–624.

    Google Scholar 

  • Petersen C, Moller LB. 2000 Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene 261, 289–298.

    Google Scholar 

  • Petersohn A, Brigulla M, Haas S, Hoheisel JD, Volker U, Hecker M. 2001 Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183, 5617–5631.

    Google Scholar 

  • Rensing C, Mitra B, Rosen BP. 1997 The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94, 14326–14331.

    Google Scholar 

  • Rensing C, Mitra B, Rosen BP. 1998 A Zn(II)-translocating P-type ATPase from Proteus mirabilis. Biochem Cell Biol 76, 787–790.

    Google Scholar 

  • Rensing C, Ghosh M, Rosen BP. 1999 Families of soft-metal-ion-transporting ATPases. J Bacteriol 181, 5891–5897.

    Google Scholar 

  • Rensing C, Fan B, Sharma R, Mitra B, Rosen BP. 2000 CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97, 652–656.

    Google Scholar 

  • Rutherford JC, Cavet JS, Robinson NJ. 1999 Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J Biol Chem 274, 25827–25832.

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T. 1989 Molecular cloning: A laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Silver S, Phung LT. 1996 Bacterial heavy metal resistance: New surprises. Annu Rev Microbiol 50, 753–789.

    Google Scholar 

  • Silver S, Walderhaug M. 1992 Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56, 195–228.

    Google Scholar 

  • Slack FJ, Mueller JP, Sonenshein AL. 1993 Mutations that relieve nutritional repression of the Bacillus subtilis dipeptide permease operon. J Bacteriol 175, 4605–4614.

    Google Scholar 

  • Solioz M. 2002 Role of proteolysis in copper homoeostasis. Biochem Soc Trans 30, 688–691.

    Google Scholar 

  • Solioz M, Odermatt A. 1995 Copper and silver transport by CopBATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270, 9217–9221.

    Google Scholar 

  • Solovieva IM, Entian KD. 2002 Investigation of the yvgW Bacillus subtilis chromosomal gene involved in Cd(2+) ion resistance. FEMS Microbiol Lett 208, 105–109.

    Google Scholar 

  • Stoyanov JV, Hobman JL, Brown NL. 2001 CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol 39, 502–511.

    Google Scholar 

  • Sun Y, Wong MD, Rosen DP. 2002 Both metal binding sites in the homodimer are required for metalloregulation by the CadC repressor. Mol Microbiol 44, 1323–1329.

    Google Scholar 

  • Tsai KJ, Yoon KP, Lynn AR. 1992 ATP-dependent cadmium transport by the CadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis. J Bacteriol 174, 116–121.

    Google Scholar 

  • Vagner V, Dervyn E, Ehrlich SD 1998 A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097–3104.

    Google Scholar 

  • Vander Horn PB, Zahler SA. 1992 Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis. J Bacteriol 174, 3928–3935.

    Google Scholar 

  • Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J. 1993 Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 3, 7–13.

    Google Scholar 

  • Youngman P. 1990 Use of transposons and integrational vectors for mutagenesis and construction of gene fusions in Bacillus species. In Harwood CR & Cutting SM, eds. Molecular biological mehtods for bacillus. Chichester: John Wiley and Sons; 221–266.

    Google Scholar 

  • Zuber P, Losick R. 1987 Role of AbrB in Spo0A-and Spo0Bdependent utilization of a sporulation promoter in Bacillus subtilis. J Bacteriol 169, 2223–2230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaballa, A., Helmann, J.D. Bacillus subtilis CPx-type ATPases: Characterization of Cd, Zn, Co and Cu efflux systems. Biometals 16, 497–505 (2003). https://doi.org/10.1023/A:1023425321617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023425321617

Navigation