Skip to main content
Log in

Response of Orthotropic Micropolar Elastic Medium Due to Various Sources

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The present paper is concerned with the plane strain problem in homogeneous micropolar orthotropic elastic solid. The disturbance due to various types of sources is investigated by employing the eigenvalue approach. The integral transforms have been inverted by using a numerical technique to obtain the normal force stress and tangential couple stress in the physical domain. The expressions of these quantities are given and illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eringen, A.C., 'Linear theory of micropolar elasticity', J. Math. Mech. 15 (1966) 909-924.

    Google Scholar 

  2. Eringen, A.C., Theory of Micropolar Elasticity in Fracture, Vol. II, Academic Press, New York, 1968, pp. 621-729.

    Google Scholar 

  3. Iesan, D., 'The plane micropolar strain of orthotropic elastic solids', Arch. Mech. 25 (1973) 547-561.

    Google Scholar 

  4. Iesan, D., 'Torsion of anisotropic elastic cylinders', ZAMM 54 (1974) 773-779.

    Google Scholar 

  5. Iesan, D., 'Bending of orthotropic micropolar elastic beams by terminal couples', An. St. Uni. Iasi. XX (1974) 411-418.

    Google Scholar 

  6. Gauthier, R.D., 'Experimental investigations on micropolar media', in: Brulin, O. and Hsieh, R.K.T. (eds), Mechanics of Micropolar Media, World Scientific, Singapore, 1982.

    Google Scholar 

  7. Honig, G. and Hirdes, U., 'A method for the numerical inversion of the Laplace transform', J. Comp. Appl. Math. 10 (1984) 113-132.

    Google Scholar 

  8. Nakamura, S., Benedict, R. and Lakes, R., 'Finite element method for orthotropic micropolar elasticity', Int. J. Eng. Sci. 22 (1984) 319-330.

    Google Scholar 

  9. Press, W.H., Teukolsky, S.A., Vellerlig, W.T. and Flannery, B.P., Numerical Recipes in FORTRAN, (2nd edn.), Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  10. Mahalabanabis, R.K. and Manna, J., 'Eigenvalue approach to linear micropolar elasticity', Indian J. Pure Appl. Math. 20 (1989) 1237-1250.

    Google Scholar 

  11. Cheng, Z.-Q. and He, L.-H., 'Micropolar elastic field due to a spherical inclusion', Int. J. Eng. Sci. 33 (1995) 389-397.

    Google Scholar 

  12. Cheng, Z.-Q. and He, L.-H., 'Micropolar elastic field due to a circular inclusion', Int. J. Eng. Sci. 35 (1997) 659-668.

    Google Scholar 

  13. Manna, J. and Mahalabanabis, R.K., 'Eigenvalue approach to the problem of linear micropolar thermoelasticity', Indian Acad. Math. Sci. 19 (1997) 69-86.

    Google Scholar 

  14. Erbay, H.A., 'An asymptotic theory of thin micropolar plates', Int. J. Eng. Sci. 38 (2000) 1497-1516.

    Google Scholar 

  15. Kumar, R. and Deswal, S., 'Steady-state response of a micropolar generalized thermoelastic half-space to the moving mechanical/thermal loads', Proc. Indian Acad. Math. Sci. 119 (2000) 449-465.

    Google Scholar 

  16. Kumar, R. and Deswal, S., 'Mechanical and thermal source in a micropolar generalized thermoelastic medium', J. Sound Vib. 239 (2001) 467-488.

    Google Scholar 

  17. Kumar, R., Singh, R. and Chadha, T.K., 'Eigenvalue approach to micropolar medium due to impulsive force at the origin', Indian J. Pure Appl. Math. 32 (2001) 1127-1144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Choudhary, S. Response of Orthotropic Micropolar Elastic Medium Due to Various Sources. Meccanica 38, 349–368 (2003). https://doi.org/10.1023/A:1023365920783

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023365920783

Navigation