Skip to main content
Log in

Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp.

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This is the first report documenting the presence of 1-aminocyclopropane-1-carboxylate (ACC) deaminase in Rhizobium. This enzyme, previously found in free-living bacteria, yeast and fungi, degrades ACC, the immediate precursor of ethylene in higher plants. Thirteen different rhizobial strains were examined by Southern hybridization, Western blots and ACC deaminase enzyme assay. Five of them tested positive for ACC deaminase. Induction of the expression of ACC deaminase was examined in one of the positively tested strains, Rhizobium leguminosarum bv. viciae 128C53K. This rhizobial ACC deaminase had a trace basal level of expression without ACC, but could be induced by a concentration of ACC as low as 1 µM. The more ACC added to this Rhizobium the higher the expression level of the ACC deaminase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burd G.I., Dixon D.G. and Glick B.R. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46: 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Casella S., Gault R.R., Reynolds K.C., Dyson J.E. and Brockwell J. 1984. Nodulation studies on legumes exotic to Australia: Hedysarum coronarium. FEMS Microbiol. Lett. 22: 37–45.

    Article  Google Scholar 

  • Glick B.R., Penrose D.M. and Li J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Grichko V.P. and Glick B.R. 2001. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39: 11–17.

    Article  CAS  Google Scholar 

  • Guinel F.C. and Sloetjes L.L. 2000. Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym 16), an pleiotropic mutant that nodulates poorly and has pale green leaves. J. Exp. Bot. 51: 885–894.

    Article  PubMed  CAS  Google Scholar 

  • Hall J.A., Peirson D., Ghosh S. and Glick B.R. 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Isr. J. Plant Sci. 44: 37–42.

    Google Scholar 

  • Honma M. and Shimomura T. 1978. Metabolism of 1-aminocyclo-propane-1-carboxylic acid. Agric. Biol. Chem. 42: 1825–1831.

    CAS  Google Scholar 

  • Itoh T., Aiba H., Baba T., Hayashi K., Inada T., Isono K. et al. 1996. A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1–50.0 min region on the linkage map (Supplement). DNA Res. 3: 441–445.

    Article  PubMed  CAS  Google Scholar 

  • Jia Y.J., Ito H., Matsui H. and Honma M. 2000. 1-aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces. Biosci. Biotechnol. Biochem. 64: 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S. et al. 2000. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7: 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Lee K.H. and La Rue T.A. 1992. Exogenous ethylene inhibits nodulation of Pisum stivum L. cv Sparkle. Plant Physiol. 100: 1759–1763.

    PubMed  CAS  Google Scholar 

  • Miller J.F. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY.

    Google Scholar 

  • Minami R., Uchiyama K., Murakami T., Kawai J., Mikami K., Yamada T. et al. 1998. Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J. Biochem. 123: 1112–1118.

    PubMed  CAS  Google Scholar 

  • Nukui N., Ezura H., Yuhashi K.I., Yasuta T. and Minamisawa K. 2000. Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol. 41: 893–897.

    Article  PubMed  CAS  Google Scholar 

  • Penmetsa R.V. and Cook D.R. 1997. A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275: 527–530.

    Article  PubMed  CAS  Google Scholar 

  • Penrose D.M. and Glick B.R. 2001. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can. J. Microbiol. 47: 368–372.

    Article  PubMed  CAS  Google Scholar 

  • Peters N.K. and Crist-Estes D.K. 1989. Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol. 91: 690–693.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J. and Russell D.W. 2001. Molecular Cloning, A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY.

    Google Scholar 

  • Shah S., Li J., Moffatt B.M. and Glick B.R. 1997. ACC deaminase genes from plant-growth promoting bacteria. In: Ogoshi A., Kobayashi K., Homma Y., Kodama F., Kondo N. and Akino S. (eds), Plant growth-promoting rhizobacteria: present status and future prospectus. Organization for Economic Cooperation and Development, Paris, pp. 320–324.

    Google Scholar 

  • Shah S., Li J., Moffatt B.A. and Glick B.R. 1998. Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can. J. Microbiol. 44: 833–843.

    Article  PubMed  CAS  Google Scholar 

  • Spaink H.P. 1997. Ethylene as a regulator of Rhizobium infection. Trends Plant Sci. 2: 203–204.

    Article  Google Scholar 

  • Wang C., Knill E., Glick B.R. and Défago G. 2000. Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can. J. Microbiol. 46: 898–907.

    Article  PubMed  CAS  Google Scholar 

  • Yuhashi K.I., Ichikawa N., Ezura H., Akao S., Minakawa Y., Nukui N. et al. 2000. Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl. Environ. Microbiol. 66: 2658–2663.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard R. Glick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Sebestianova, S.B., Sebestian, J. et al. Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp.. Antonie Van Leeuwenhoek 83, 285–291 (2003). https://doi.org/10.1023/A:1023360919140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023360919140

Navigation