Skip to main content
Log in

Complex Rays and Wave Packets for Decaying Signals in Inhomogeneous, Anisotropic and Anelastic Media

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Diffraction and anelasticity problems involving decaying, “evanescent” or “inhomogeneous” waves can be studied and modelled using the notion of “complex rays”. The wavefront or “eikonal” equation for such waves is in general complex and leads to rays in complex position-slowness space. Initial conditions must be specified in that domain: for example, even for a wave originating in a perfectly elastic region, the ray to a real receiver in a neighbouring anelastic region generally departs from a complex point on the initial-values surface. Complex ray theory is the formal extension of the usual Hamilton equations to complex domains. Liouville's phase-space-incompressibility theorem and Fermat's stationary-time principle are formally unchanged. However, an infinity of paths exists between two fixed points in complex space all of which give the same final slowness, travel time, amplitude, etc. This does not contradict the fact that for a given receiver position there is a unique point on the initial-values surface from which this infinite complex ray family emanates.

In perfectly elastic media complex rays are associated with, for example, evanescent waves in the shadow of a caustic. More generally, caustics in anelastic media may lie just outside the real coordinate subspace and one must trace complex rays around the complex caustic in order to obtain accurate waveforms nearby or the turning waves at greater distances into the lit region. The complex extension of the Maslov method for computing such waveforms is described. It uses the complex extension of the Legendre transformation and the extra freedom of complex rays makes pseudocaustics avoidable. There is no need to introduce a Maslov/KMAH index to account for caustics in the geometrical ray approximation, the complex amplitude being generally continuous. Other singular ray problems, such as the strong coupling around acoustic axes in anisotropic media, may also be addressed using complex rays.

Complex rays are insightful and practical for simple models (e.g. homogeneous layers). For more complicated numerical work, though, it would be desirable to confine attention to real position coordinates. Furthermore, anelasticity implies dispersion so that complex rays are generally frequency dependent. The concept of group velocity as the velocity of a spatial or temporal maximum of a narrow-band wave packet does lead to real ray/Hamilton equations. However, envelope-maximum tracking does not itself yield enough information to compute synthetic seismograms.

For anelasticity which is weak in certain precise senses, one can set up a theory of real, dispersive wave-packet tracking suitable for synthetic seismogram calculations in linearly visco-elastic media. The seismologically-accepiable constant-Q rheology of Liu et al. (1976), for example, satisfies the requirements of this wave-packet theory, which is adapted from electromagnetics and presented as a reasonable physical and mathematical basis for ray modelling in inhomogeneous, anisotropic, anelastic media. Dispersion means that one may need to do more work than for elastic media. However, one can envisage perturbation analyses based on the ray theory presented here, as well as extensions like Maslov's which are based on the Hamiltonian properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki K. and Richards P.G., 1980: Quantitative seismology, Vol. 1, W. H. Freeman & Co., San Francisco.

    Google Scholar 

  • Babič V.M. and Kirpičnikova N.Y., 1979: The boundary-layer method in diffraction problems. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Bennett J.A., 1974: Complex rays for radio waves in an absorbing ionosphere. Proc. I.E.E.E., 62, 1577-1585.

    Google Scholar 

  • Bernstein I.B., 1975: Geometric optics in space-and time-varying plasmas. Phys. Fluids, 18, 320-324.

    Article  Google Scholar 

  • Brillouin L., 1960: Wave propagation and group velocity. Academic Press, New York.

    Google Scholar 

  • Budden K.G., 1961: Radio waves in the ionosphere. Cambridge Univ. Press, Cambridge, U.K.

    Google Scholar 

  • Budden K. G., 1985: The propagation of radio waves. Cambridge Univ. Press, Cambridge, U.K.

    Book  Google Scholar 

  • Carcione J.M., 1993: Seismic modeling in viscoelastic media. Geophysics, 58, 110-120.

    Article  Google Scholar 

  • Censor D., 1976: Uniqueness of solutions to Suchy's ray equations for absorbing media. Proc. I.E.E.E., 64, 1731-1732.

    Google Scholar 

  • Censor D., 1977: Fermat's principle and real space-time rays in absorbing media. J. Phys. A., 10, 1781-1790.

    Article  Google Scholar 

  • Červený V., 1972: Seismic rays and ray intensities in inhomogeneous anisotropic media. Geophys. J. R. astr. Soc., 29, 1-13.

    Article  Google Scholar 

  • Červený V., Popov M.M. and Pšenčík I., 1982: Computation of wavefields in inhomogeneous media — Gaussian beam approach. Geophys. J. R. astr. Soc., 10, 109-128.

    Article  Google Scholar 

  • Chapman C.H., 1978: A new method of computing synthetic seismograms. Geophys. J. R. astr. Soc., 54, 481-518.

    Article  Google Scholar 

  • Chapman C.H., 1985: Ray theory and its extensions: WKBJ and Maslov seismograms. J. Geophys., 58, 27-43.

    Google Scholar 

  • Chapman C.H. and Drummond R., 1982: Body-wave seismograms in inhomogeneous media using Maslov asymptotic theory. Bull. seism. Soc. Am., 72, S277-S317.

    Google Scholar 

  • Chapman C.H. and Shearer P.M., 1989: Ray tracing in azimuthally anisotropic media — II. Quasi-shear wave coupling. Geophys. J., 96, 65-83.

    Article  Google Scholar 

  • Choudhary S. and Felsen L.B., 1974: Analysis of Gaussian beam propagation and diffraction by inhomogeneous wave tracking. Proc. I.E.E.E., 62, 1530-1541.

    Google Scholar 

  • Connor K.E. and Felsen L.B., 1974: Complex space-time rays and their application to pulse propagation in lossy dispersive media. Proc. I.E.E.E., 62, 1586-1598.

    Google Scholar 

  • Courant R. and Hilbert D., 1962: Methods of mathematical physics, Vol. 1, Interscience Publ. Inc., New York.

    Google Scholar 

  • Crampin S. and Yedlin M., 1981: Shear-wave singularities of wave propagation in anisotropic media. J. Geophys., 49, 43-46.

    Google Scholar 

  • Deschamps G.A., 1971: Gaussian beam as a bundle of complex rays. Electronics Letters, 7, 684-685.

    Article  Google Scholar 

  • Felsen L.B., 1976: Evanescent waves. J. Opt. Soc. Am., 66, 751-760.

    Article  Google Scholar 

  • Felsen L.B., 1984: Geometrical theory of diffraction, evanescent waves, complex rays and Gaussian beams. Geophys. J. R. astr. Soc., 79, 77-88.

    Article  Google Scholar 

  • Garmany J., 1988: Seismograms in stratified anisotropic media — I. WKBJ theory. Geophys. J., 92, 365-377.

    Google Scholar 

  • Goldstein H., 1980: Classical mechanics, 2nd Ed. Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Guest W.S., Spencer C.P. and Thomson C.J., 1993: Anisotropic reflection and transmission calculations with application to a crustal seismic survey from the East Greenland Shelf. J. Geophys. Res., 98, 14161-14184.

    Article  Google Scholar 

  • Hearn D.J. and Krebes E.S., 1990a: On computing ray-synthetic seismograms for anelastic media using complex rays. Geophysics, 55, 422-432.

    Article  Google Scholar 

  • Hearn D.J. and Krebes E.S., 1990b: Complex rays applied to wave propagation in a viscoelastic medium. Pure Appl. Geophys., 132, 401-415.

    Article  Google Scholar 

  • Hudson J.A., 1980: The excitation and propagation of elastic waves. Cambridge Univ. Press, Cambridge, U.K.

    Google Scholar 

  • Kelamis P.G., Kanasewich E.R. and Abramovici F., 1983: Attenuation of seismograms obtained by the Cagniard-Pekeris method. Geophysics, 48, 1204-1211.

    Article  Google Scholar 

  • Keller J.B., 1958: A geometrical theory of diffraction. Proc. Symp. Appl. Math., 8, 27-52.

    Article  Google Scholar 

  • Kendall J-M. and Thomson C.J., 1989: A comment on the form of the geometrical spreading equations, with some numerical examples of seismic ray tracing in inhomogeneous anisotropic media. Geophys. J. Int., 99, 401-413.

    Article  Google Scholar 

  • Kendall J-M. and Thomson C.J., 1993: Maslov ray summation, pseudocaustics, Lagrangian equivalence and transient seismic waveforms. Geophys. J. Int., 113, 186-214.

    Article  Google Scholar 

  • Kennett B.L.N., 1983: Seismic wave propagation in stratified media. Cambridge Univ. Press, Cambridge, U.K.

    Google Scholar 

  • Klauder J.R., 1987: Global uniform asymptotic wave-equation solutions for large wavenumbers, Ann. Physics. 180, 108-151.

    Article  Google Scholar 

  • Klimeš L.; 1984: The relation between Gaussian beams and Maslov asymptotic theory. Studia geophys. geod., 28, 237-247.

    Article  Google Scholar 

  • Kravtsov Yu.A., 1967: Complex rays and complex caustics. Izv. VUZ Radiofizika, 10, 1283-1304, Engl. transl.: Radiophysics and quantum electronics, 10, 719–730, 1971.

    Google Scholar 

  • Kravtsov Yu.A. and Yashin Yu.Ya., 1969: Complex geometric optics of inhomogeneous anisotropic media. Izvestiya VUZ. Radiofizika, 12, 674-685. English transl.: Radiophysics and quantum electronics, 12, 537–546, 1969.

    Google Scholar 

  • Kravtsov Yu.A. and Orlov Yu.I., 1990: Geometrical optics of inhomogeneous media. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Krebes E.S. and Hron F., 1980: Synthetic seismograms for SH waves in a layered anelastic medium by asymptotic ray theory. Bull. seism. Soc. Am., 70, 2005-2020.

    Article  Google Scholar 

  • Krebes E.S. and Hearn D.J., 1985: On the geometrical spreading of viscoelastic waves. Bull. seism. Soc. Am., 75, 391-396.

    Article  Google Scholar 

  • Lewis R.M., 1965: Asymptotic theory of wave propagation. Arch. Rat. Mech. Anal., 20, 191-250.

    Article  Google Scholar 

  • Liu H-P., Anderson D.L. and Kanamori H., 1976: Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophys. J. R. astr. Soc., 47, 41-58.

    Article  Google Scholar 

  • Müller G., 1985: The reflectivity method: a tutorial. J. Geophys., 58, 153-174.

    Google Scholar 

  • Musgrave M.J.P., 1985: Acoustic axes in orthorhombic media. Proc. R. Soc. Lond. A, 401, 131-143.

    Article  Google Scholar 

  • Richards P.G., 1984: On wavefronts and interfaces in anelastic media. Bull. seism. Soc. Am., 74, 2157-2165.

    Article  Google Scholar 

  • Rönnmark K., 1984: Ray tracing in dissipative media. Annales Geophysicae, 2, 57-60.

    Google Scholar 

  • Robertsson J.O.A., Blanch J.O. and Symes W., 1994: Viscoelastic finite-difference modeling. Geophysics, 59, 1444-1456.

    Article  Google Scholar 

  • Rümpker G. and Thomson C.J., 1993: Seismic waveform effects of conical points in gradually-varying anisotropic media. Geophys. J. Int., 118, 759-780.

    Article  Google Scholar 

  • Sambridge M.S., 1990: Non-linear arrival time inversion: constraining velocity anomalies by seeking smooth models in 3-D. Geophys. J. Int., 102, 653-677.

    Article  Google Scholar 

  • Schmidt T. and Müller G., 1986: Seismic signal velocity in absorbing media. J. Geophys., 60, 199-203.

    Google Scholar 

  • Seckler B.D. and Keller J.B., 1959: Geometrical theory of diffraction in inhomogeneous media. J. acoust. Soc. Am., 31, 192-205.

    Article  Google Scholar 

  • Sheriff R.E. and Geldart L.P., 1995: Exploration Seismology. Cambridge Univ. Press, Cambridge, U.K.

    Book  Google Scholar 

  • Suchy K., 1972a: The velocity of a wave packet in an anisotropic absorbing medium. J. Plasma Physics, 8, 53-65.

    Article  Google Scholar 

  • Suchy K., 1972b: Ray tracing in an anisotropic absorbing medium. J. Plasma Physics, 8, 53-65.

    Article  Google Scholar 

  • Suchy K., 1974: The propagation of wave packets in inhomogeneous anisotropic media with moderate absorption. Proc. I.E.E.E., 62, 1571-1576.

    Google Scholar 

  • Suchy K., 1981: Real Hamilton equations of geometric optics for media with moderate absorption. Radio Sci., 16, 1179-1182.

    Article  Google Scholar 

  • Tan B.H., Jackson I. and Fitz Gerald J.D., 1997: Shear wave dispersion and attenuation in fine-grained synthetic olivine aggregates: preliminary results. Geophys. Res. Letters, Submitted.

  • Thomson C.J. and Chapman C.H., 1985: An introduction to Maslov's asymptotic method. Geophys. J. R. astr. Soc., 83, 143-168.

    Article  Google Scholar 

  • van der Hilst R.D. and Spakman W., 1989: Importance of the reference model in linearized tomography and images of subduction below the Caribbean plate. Geophys. J. Int., 16, 1093-1096.

    Google Scholar 

  • Wang W.D. and Deschamps G.A., 1974: Application of complex ray tracing to scattering problems. Proc. I.E.E.E., 62, 1541-1551.

    Google Scholar 

  • Weber M.H., 1988: Computation of body-wave seismograms in absorbing 2D media using the Gaussian beam method: comparison with exact methods. Geophys. J. R. astr. Soc., 92, 1-24.

    Article  Google Scholar 

  • Whitham G.B., 1974: Linear and nonlinear waves. Wiley Interscience, New York.

    Google Scholar 

  • Young R.M., 1983: The interaction of elastic waves with inhomogeneous media. Ph.D. thesis, Victoria University of Wellington, New Zealand.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, C.J. Complex Rays and Wave Packets for Decaying Signals in Inhomogeneous, Anisotropic and Anelastic Media. Studia Geophysica et Geodaetica 41, 345–381 (1997). https://doi.org/10.1023/A:1023359401107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023359401107

Navigation