Skip to main content
Log in

High-Resolution Modeling of Energy-Services Supply Systems Using deeco: Overview and Application to Policy Development

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Contemporary energy policy problems typically involve issues of (1) technology selection, placement, and scheduling, (2) energy-services demand modification by location and time-of-use, and/or (3) new sourcing options including emerging renewables. The high-resolution energy systems modeling environment deeco (dynamic energy, emissions, and cost optimization) naturally captures interactions between these components. deeco can assist with the search for policy sets which reduce CO2 and/or displace depletable resource use and which take advantage of cost-effective system integration synergies. The network management objective may be treated as an exogenous variable and process performance can depend on the thermodynamic intensive state of the system. Numerical studies indicate that multiple policy interventions cannot be assumed to be independent and that staging can be significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ayres, The minimum complexity of endogenous growth models: the role of physical resource flows, Energy – The International Journal 26(9) (2001) 817–838.

    Google Scholar 

  2. H.D. Baehr, Thermodynamik: Grundlagen und technische Anwendungen, 10 Auflage (Springer, Berlin, 2000). (Translation: Thermodynamics: Fundamentals and Technical Applications, 10th edition.)

    Google Scholar 

  3. D. Beck, J. Paetzold and J. Nilges, Dezentrale Energiesysteme in elektrischen Verteilungsnetzen, Brennstoff–Wärme–Kraft 53 (2001) 63–66. (Translation: Distributed energy systems in electricity distribution grids.)

    Google Scholar 

  4. A. Bejan, Advanced Engineering Thermodynamics, 2nd ed. (Wiley, New York, 1997).

    Google Scholar 

  5. A. Bejan, G. Tsatsaronis and M. Moran, Thermal Design and Optimization (Wiley, New York, 1996).

    Google Scholar 

  6. T. Bruckner, Solarthermie und rationelle Engergieverwendung, Diplomarbeit, Institut für Theoretische Physik, Universität Würzburg, Germany (1992). (Translation: Solar thermal energy and energy efficiency improvement, Master Thesis.)

    Google Scholar 

  7. T. Bruckner, Dynamische Energie-und Emissionsoptimierung regionaler Energiesysteme, Doktorarbeit, Institut für Theoretische Physik, UniversitätWürzburg, Germany (1997). (Translation: Dynamic energy and emissions optimization for regional energy systems, Ph.D. Thesis.)

    Google Scholar 

  8. T. Bruckner, Benutzerhandbuch deeco, Version 1.0, Institut für Energietechnik, Technische Universität Berlin, Germany (2001). (Translation: User's Handbook for deeco.)

  9. T. Bruckner, H.-M. Groscurth and R. Kümmel, Competition and synergy between energy technologies in municipal energy systems, Energy – The International Journal 22(10) (1997) 1005–1014.

    Google Scholar 

  10. J. Bruhn, Regenerative Energiequellen und Verfahren der rationellen Energieverwendung: Synergie und Konkurrenz, Diplomarbeit, Institut für Energietechnik, Technische Universität Berlin, Germany (2000). (Translation: Renewable energy sources and energy efficiency: synergy and counteraction, Master Thesis.)

    Google Scholar 

  11. D.W. Bunn and E.R. Larsen (eds.), Systems Modelling for Energy Policy (Wiley, Chichester, 1997).

    Google Scholar 

  12. A.C.B. den Ouden, PRODESign: a program for optimisation and dimensioning of energy conversion systems, in: Proceedings of ECOS 2000: The International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Aspects of Energy and Process Systems, University of Twente, Enschede, The Netherlands, 05–07 July 2000, Part 3, ed. G.G. Hirs (2000) pp. 1691–1703.

    Google Scholar 

  13. U. Derigs, Programming in Networks and Graphs: On the Combinatorial Background and Near-Equivalence of Network Flow and Matching Algorithms (Springer, Berlin, 1988).

    Google Scholar 

  14. M.A. Ellis and B. Stroustrup, The Annotated C++ Reference Manual (Addison-Wesley, Reading, MA, 1992), reprinted with corrections, October 1992.

    Google Scholar 

  15. Energy Efficiency and Conservation Authority, National Energy Efficiency and Conservation Strategy (Energy Efficiency and Conservation Authority, Wellington, New Zealand, September, 2001).

    Google Scholar 

  16. European Commission, Energy for the future: renewable sources of energy, White Paper for a Community Strategy and Action Plan, COM(97), 599 final (26 November 1997).

  17. European Commission, Communication from the Commission on the implementation of the first phase of the European Climate Change Programme, COM(2001), 580, European Commission, Brussels (23 November 2001).

    Google Scholar 

  18. European Commission, Towards a European strategy for the security of energy supply, Green Paper, Office for Official Publications of the European Communities, Luxembourg (2001).

    Google Scholar 

  19. European Commission, Community research: energy, environment and sustainable development, Integration of Renewable Energy Sources and Distributed Generation in Energy Supply Systems, Office for Official Publications of the European Communities, Luxembourg (2001).

    Google Scholar 

  20. A.M. Gibbons, Algorithmic Graph Theory (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  21. G.A. Goldstein and L.A. Greening, Energy planning and the development of carbon mitigation strategies – using the MARKAL family of models, International Resources Group, Washington, DC (April 2001), updated.

    Google Scholar 

  22. P.E. Grohnheit, Application and limitations of annual models for electricity capacity development, in: Systems Modelling for Energy Policy, eds. D.W. Bunn and E.R. Larsen, chapter 7 (Wiley, Chichester, 1997) pp. 89–116.

    Google Scholar 

  23. H.-M. Groscurth, Rationelle Energieverwendung durch Wärmerückgewinnung, Doktorarbeit, (Physica-Verlag, Heidelberg, 1991). (Translation: Energy Efficiency Improvement through Heat Recovery, Ph.D. Thesis.)

    Google Scholar 

  24. H.-M. Groscurth, T. Bruckner and R. Kümmel, Energy, cost, and carbon dioxide optimization of disaggregated, regional energy-supply systems, Energy – The International Journal 18(12) (1993) 1187–1205.

    Google Scholar 

  25. H.-M. Groscurth, T. Bruckner and R. Kümmel, Modeling of energy-services supply systems, Energy – The International Journal 20(9) (1995) 941–958.

    Google Scholar 

  26. H.-M. Groscurth and K.-P. Kress, Fuzzy data compression for energy optimization models, Energy – The International Journal 23(1) (1998) 1–9.

    Google Scholar 

  27. H.-M. Groscurth, R. Kümmel and W. van Gool, Thermodynamic limits to energy optimization, Energy – The International Journal 14(5) (1989) 241–258.

    Google Scholar 

  28. D. Henning, MODEST: an energy-system optimisation model applicable to local utilities and countries, Energy – The International Journal 22(12) (1997) 1135–1150.

    Google Scholar 

  29. D. Henning, Cost minimization for a local utility through CHP, heat storage and load management, International Journal of Energy Research 22(8) (1998) 691–713.

    Google Scholar 

  30. R. Jank (ed.), A Guidebook for Advanced Local Energy Planning (ALEP) (International Energy Agency, Paris, 2000).

    Google Scholar 

  31. M. Kainuma, Y. Matsuoka and T. Morita, CO2 emission forecast in Japan by AIM/end-use model, OPSEARCH 38(1) (2001) 109–125.

    Google Scholar 

  32. M. Kainuma, Y. Matsuoka, T. Morita and G. Hibino, Development of an end-use model for analysing policy options to reduce greenhouse gas emissions, IEEE Transactions on Systems, Man, and Cybernetics, Part C, Applications and Reviews 29(3) (1999) 317–324.

    Google Scholar 

  33. A. Karlqvist, Network as dynamic systems, in: Networks in Action: Communication, Economics and Human Knowledge, eds. D. Batten, J.L. Casti and R. Thord (Springer, Berlin, 1995) pp. 82–106.

    Google Scholar 

  34. T.J. Kotas, The Exergy Method of Thermal Plant Analysis (Krieger, Malabar, FL, 1995), reprinted with corrections and new appendix G.

    Google Scholar 

  35. R. Kühner, Ein erweiterter prozeßtechnischer Modellbildungsansatz für die energiewirtschaftliche Planung, in: Operations Research Proceedings 1996: Selected Papers of the Symposium on Operations Research, Braunschweig, Germany, 03–06 September 1996, eds. U. Derigs et al. (Springer, Berlin, 1996). (Translation: An extended energy process modeling framework for use in energy planning.)

    Google Scholar 

  36. A. Kunkel, Dynamische Optimierung eines Energieversorgungssystems mit Wärmespeicher, Diplomarbeit, Institut für Theoretische Physik, Universität Würzburg, Germany (1994). (Translation: Dynamic optimization of an energy supply system containing thermal storage, Master Thesis.)

    Google Scholar 

  37. A. Kunkel, H. Schwab, T. Buckner and R. Kümmel, Kraft–Wärme–Kopplung und innovative Energiespeicherkonzepte, Brennstoff–Wärme–Kraft 48 (1996) 54–60. (Translation: Cogeneration and innovative energy storage concepts.)

    Google Scholar 

  38. J. Lermit and N. Jolands, Monitoring Energy Efficiency Performance in New Zealand: A Conceptual and Methodological Framework (Energy Efficiency and Conservation Authority, Wellington, New Zealand, September 2001).

    Google Scholar 

  39. D. Lindenberger, T. Bruckner, H. Groscurth and R. Kümmel, Optimization of Solar district heating systems: seasonal storage, heat pumps, and cogeneration, Energy – The International Journal 25(7) (2000) 591–608.

    Google Scholar 

  40. D. Lindenberger, T. Bruckner, H. Groscurth and R. Kümmel, Heat, electricity, sun, and fossil fuels: dynamic energy, emission, and cost optimisation, High Temperatures – High Pressures 33 (2001) 463–468.

    Google Scholar 

  41. D. Lindenberger and R. Kümmel, Modernization of regional energy systems, in: Proceedings of the 2nd International Workshop: Advances in Energy Studies: Exploring Supplies, Constraints, and Strategies, Porto Venere, Italy, eds. S. Ulgiati et al. (23–27 May 2000) pp. 85–93.

  42. S. Messner, A. Golodnikov and A. Gritsevskii, A stochastic version of the dynamic linear programming model MESSAGE III, Energy – The International Journal 21(9) (1996) 775–784.

    Google Scholar 

  43. R. Morrison, Optimizing exergy-services supply networks for sustainability, M.Sc. Thesis, Physics Department, University of Otago, New Zealand (2000).

    Google Scholar 

  44. R. Morrison and T. Bruckner, High-resolution modeling of distributed resources using deeco: adverse interactions and potential policy conflicts, in: Proceedings of the 3rd International Workshop: Advances in Energy Studies: Reconsidering the Importance of Energy, Porto Venere, Italy, 24–28 September 2002, eds. S. Ulgiati et al., in press.

  45. G.L. Nemhauser and L. A.Wolsey, Integer and Combinatorial Optimization (Wiley, New York, 1988).

    Google Scholar 

  46. E. Nieuwlaar, Enerpack 5: a package for the thermodynamic analysis of energy systems, 5th ed., Report No. 96057/Software, Department of Science, Technology, and Society, Utrecht University, Utrecht (13 August, 1996).

    Google Scholar 

  47. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  48. K. Ramsel, CO2-und Kostenoptimierung mit deeco: Modellierung des emissionsoptimierten Einsatzes von Gas-und Dampfturbinen-Anlagen, Diplomarbeit, Institut für Energietechnik, Technische Universität Berlin, Germany (2002). (Translation: CO2 and monetary cost optimization with deeco: modeling of emissions-optimal unit commitment for gas and steam turbine plant, Master Thesis.)

    Google Scholar 

  49. U. Remme, G.A. Goldstein, U. Schellmann and C. Schlenzig, MESAP/TIMES – advanced decision support for energy and environmental planning, in: Operations Research Proceedings 2001 – Selected Papers of the International Conference on Operations Research (OR 2001), 03–05 September 2001, Duisburg, Germany, eds. P. Chamoni, R. Leisten, A. Martin, J. Minnemann and H. Stadtler (2002) pp. 59–66.

  50. M.A. Salman, Concepts of power system modeling and simulation, in: Systems Modeling and Computer Simulation, ed. N.A. Kheir, 2nd ed., chapter 15 (Marcel Dekker, New York, 1996) pp. 625–656.

    Google Scholar 

  51. H. Schwab, Dynamische Optimierung von regionalen Energieversorgungssystemen unter Einbeziehung von (supraleitenden) Energiespeichern, Diplomarbeit, Institut für Theoretische Physik, Universität Würzburg, Germany (1994). (Translation: Dynamic optimization of regional energy supply systems taking into account (superconducting) energy storage, Master Thesis.)

    Google Scholar 

  52. A.J. Seebregts, G.A. Goldstein and K.E.L. Smekens, Energy/environmental modeling with the MARKAL family of models, in: Operations Research Proceedings 2001 – Selected Papers of the International Conference on Operations Research (OR 2001), 03–05 September 2001, Duisburg, Germany, eds. P. Chamoni, R. Leisten, A. Martin, J. Minnemann and H. Stadtler (2002) pp. 75–82.

  53. D.K. Smith, Network Optimisation Practice: A Computational Guide (Ellis Horwood, Chichester, 1982).

    Google Scholar 

  54. C. Soanes, A. Spooner and S. Hawker (eds.), Oxford Paperback Dictionary, Thesaurus, and Wordpower Guide (Oxford University Press, Oxford, 2001).

    Google Scholar 

  55. G. Sundberg and D. Henning, Investments in combined heat and power plants: influence of fuel price on cost minimized operation, Energy Conversion and Management 43(5) (2002) 639–650.

    Google Scholar 

  56. G. Sundberg and B.G. Karlsson, Interaction effects in optimising a municipal energy system, Energy – The International Journal 25(9) (2000) 877–891.

    Google Scholar 

  57. W. van Gool, The value of energy carriers, Energy – The International Journal 12 (1987) 509–518.

    Google Scholar 

  58. H. Walther and G. Nägler, Graphen, Algorithmen, Programme (Springer, Wien, 1987). (Translation: Graphs, Algorithms, Programs.)

    Google Scholar 

  59. T.C. Weitzen, The C++ graph classes: a tutorial, in: Standard Components, Release 3.0, Programmers Guide, AT&T & UNIX Systems Laboratories, 7/1–7/30 (1992). (Part of the Hewlett-Packard HP-UX workstation documentation.)

  60. R. Yokoyama, Y. Hasegawa and K. Ito, A MILP decomposition approach to large scale optimization in structural design of energy supply systems, Energy Conversion and Management 43(6) (2002) 771–790.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robbie Morrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruckner, T., Morrison, R., Handley, C. et al. High-Resolution Modeling of Energy-Services Supply Systems Using deeco: Overview and Application to Policy Development. Annals of Operations Research 121, 151–180 (2003). https://doi.org/10.1023/A:1023359303704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023359303704

Navigation