Skip to main content

Study of natural and ion exchanged vermiculite by emanation thermal analysis, TG, DTA and XRD


Emanation thermal analysis (ETA), thermogravimetry, DTA and XRD were used in thermal characterization of natural vermiculite (Santa Olalla, Huelva, Spain) and of Na+- and - exchanged vermiculite samples during heating in air in the range 25-1100°C. A good agreement between the results of these methods was found. Changes in the radon release rate measured by ETA, which reflected the decrease and collapse of the interlayer space after the release of water as well as the formation of new crystalline phases were evaluated using a mathematical model. The model used for the evaluation was found suitable for the quantitative characterization of microstructure changes during in situ conditions of heating of vermiculite samples.

This is a preview of subscription content, access via your institution.


  1. J. R. Hindman, Vermiculite, in: Industrial Minerals and Rocks, (D. D. Carr, Ed.) Society for Mining, Metallurgy and Exploration, Inc., Littleton, Colo., USA 1994, p. 1103.

    Google Scholar 

  2. J. Konta, Appl. Clay Sci., 10 (1995) 275.

    Article  CAS  Google Scholar 

  3. A. Russell, Vermiculite in Industrial Minerals, Annual Supplement, Mining Journal, London, Vol. 332, 1998, p. 8.

    Google Scholar 

  4. M. J. Potter, Amer. Ceram. Bull., 1999, 145.

  5. V. Balek. and J. Tölgyessy, Emanation Thermal Analysis and other radiometric emanation methods. In: Wilson and Wilson's Comprehensive Analytical Chemistry, Vol. XIIC, (G. Svehla, Ed.), Elsevier, Amsterdam 1984, pp. 304.

    Google Scholar 

  6. V. Balek, Thermochim. Acta, 192 (1991) 1.

    Article  CAS  Google Scholar 

  7. V. Balek, J. Šubrt, T. Mitsuhashi, I. N. Beckman and K. Györyová, J. Therm. Anal. Cal., 67 (2002) 15.

    Article  CAS  Google Scholar 

  8. Z. Málek, V. Balek, D. Garfinkel Shweky and S. Yariv, J. Thermal Anal., 48 (1997) 83.

    Article  Google Scholar 

  9. V. Balek, Z. Málek, S. Yariv and S. Matuschek, J. Therm. Anal. Cal., 56 (1999) 67.

    Article  CAS  Google Scholar 

  10. V. Balek, Z. Málek and E. Klosová, J. Therm. Anal. Cal., 53 (1998) 625.

    Article  CAS  Google Scholar 

  11. J. Poyato, L. A. Perez-Maqueda, M. C. Jimenez de Haro, J. L. Pérez-Rodríquez, J. Šubrt and V. Balek, J. Therm. Anal. Cal., 67 (2002) 73.

    Article  CAS  Google Scholar 

  12. I. N. Beckman and V. Balek, J. Therm. Anal. Cal., 67 (2002) 49.

    Article  CAS  Google Scholar 

  13. L. A. Pérez-Maqueda, O. B. Caneo, J. Poyato and J. L. Pérez-Rodríquez, Phys. Chem. Minerals, 28 (2001) 61.

    Article  Google Scholar 

  14. J. F. Ziegler, J. P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, New York 1985.

    Google Scholar 

  15. G. F. Walker, Clays and Clay Minerals, 4 (1956) 101.

    Google Scholar 

  16. G. F. Walker and W. F. Cole, The vermiculite minerals, In The Differential Thermal Investigation of Clays, Chapter 7, (R. C. Mackenzie, Ed.), Mineralogical Society, London 1957, pp. 191–206.

    Google Scholar 

  17. J. Keay and A. ild, Clay Minerals Bulletin, 4 (1961) 221.

    CAS  Google Scholar 

  18. H. van Olphen, Clays and Clay Minerals, 11 (1963) 178.

    Google Scholar 

  19. H. van Reichenbach, Clay Minerals, 29 (1994) 327.

    Google Scholar 

  20. J. Poyato, L. A. Pérez-Maqueda, A. Justo and V. Balek, Clays Clay Miner., 50 (2002) 791.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. Balek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pérez-Maqueda, L.A., Balek, V., Poyato, J. et al. Study of natural and ion exchanged vermiculite by emanation thermal analysis, TG, DTA and XRD. Journal of Thermal Analysis and Calorimetry 71, 715–726 (2003).

Download citation

  • Issue Date:

  • DOI:

  • DTA
  • vermiculite
  • microstructure
  • emanation thermal analysis
  • ion exchange
  • TG
  • XRD