Skip to main content

Degree Spectra of Relations on Boolean Algebras

Abstract

We show that every computable relation on a computable Boolean algebra \(\mathfrak{B}\) is either definable by a quantifier-free formula with constants from \(\mathfrak{B}\) (in which case it is obviously intrinsically computable) or has infinite degree spectrum.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel (eds.), Handbook of Recursive Mathematics, Stud. Log. Found. Math., Vols. 138/139, Elsevier, Amsterdam (1998).

    Google Scholar 

  2. 2.

    R. I. Soare, Recursively Enumerable Sets and Degrees, Persp. Math. Log., Springer, Heidelberg (1987).

    Google Scholar 

  3. 3.

    W. Hodges, Model Theory, Enc. Math. Appl., Vol. 42, Cambridge Univ. Press, Cambridge (1993).

    Google Scholar 

  4. 4.

    S. S. Goncharov, Countable Boolean Algebras and Decidability, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1996).

    Google Scholar 

  5. 5.

    C. J. Ash and A. Nerode, “Intrinsically recursive relations,” in Aspects of Effective Algebra, Proc. Conf. Monash Univ., Australia (1981), pp. 26–41.

  6. 6.

    M. Moses, “Relations intrinsically recursive in linear orders,”Z.Math. Log. Grund. Math., 32, No. 5, 467–472 (1986).

    Google Scholar 

  7. 7.

    V. S. Harizanov, “Degree spectrum of a recursive relation on a recursive structure,” Ph. D Thesis, University of Wisconsin, Madison, WI (1987).

    Google Scholar 

  8. 8.

    J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras,” J. Symb. Log., 46, No. 3, 572–594 (1981).

    Google Scholar 

  9. 9.

    D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko, “Degree spectra and computable dimension in algebraic structures,” Ann. Pure Appl. Log., 115, Nos. 1–3, 71–113 (2002).

    Google Scholar 

  10. 10.

    V. S. Harizanov, “The possible Turing degree of the nonzero member in a two element degree spectrum,” Ann. Pure Appl. Log., 60, No. 1, 1–30 (1993).

    Google Scholar 

  11. 11.

    D. R. Hirschfeldt, “Degree spectra of relations on computable structures in the presence of Δ0 2 isomorphisms,” J. Symb. Log., 67, No. 2, 697–720 (2002).

    Google Scholar 

  12. 12.

    M. Moses, “Recursive linear orderings with recursive successivities,” Ann. Pure Appl. Log., 27, No. 3, 253–264 (1984).

    Google Scholar 

  13. 13.

    S. B. Cooper, L. Harrington, A. H. Lachlan, et al., “The d.r.e. degrees are not dense,” Ann. Pure Appl. Log., 55, No. 2, 125–151 (1991).

    Google Scholar 

  14. 14.

    R. G. Downey and M. F. Moses, “Recursive linear orders with incomplete successivities,” Trans. Am. Math. Soc., 326, 653–668 (1991).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goncharov, S.S., Downey, R.G. & Hirschfeldt, D.R. Degree Spectra of Relations on Boolean Algebras. Algebra and Logic 42, 105–111 (2003). https://doi.org/10.1023/A:1023350306979

Download citation

  • computable Boolean algebra
  • computable relation
  • intrinsically computable relation