Skip to main content
Log in

An RAPD (Random Amplified Polymorphic DNA) Analysis of Genetic Population Structure of Balea biplicata (Gastropoda: Clausiliidae) in Fragmented Floodplain Forests of the Elster/Saale Riparian System

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Eight German populations of the land snail Balea biplicata(Mollusca: Clausiliidae) were studied using the randomly amplified polymorphic DNA-polymerase chain reaction and morphometrics (principal component and discriminant analysis) to examine population structure and gene flow patterns in a fragmented landscape mosaic along the Elster/Saale riparian system, Germany. A variety of population genetic analyses targeting either more on the geographic scale of gene flow (genetic distances, F statistics, Mantel test) or on local genotypic structure (heterozygosity, linkage disequilibrium, bottleneck probability) showed that (1) the population system in total is governed by high gene flow independent of geographic distance, (2) genetic structure on the narrower sampling scale is mainly determined by stochastic processes due to genetic drift in small isolated and frequently recolonized populations, and (3) the morphometrical variation of the populations was related neither to habitat nor to genetic heterogeneity. The potentials for active and passive dispersal capacity of the snails and possible environmental impacts on their population structure are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apostol, B. L., Black, W. C., IV, Reiter, P., & Miller, B. (1996). Population genetics with RAPD-PCR markers: The breeding structure of Aedes aegypti in Puerto Rico. Heredity 76:325–334.

    PubMed  Google Scholar 

  • Armbruster, G. (1997). Genetische Verarmung aufgrund von Populationseinbrüchen: Eine Analyse bei der seltenen Landschneckenart Cochlicopa nitens (Gallenstein, 1848). Natur und Landschaft 72:444–446.

    Google Scholar 

  • Armbruster, G. (1998). Bei einer verbreiteten Landschnecke, Cochlicopa lubrica (O.F. Müller), wird die Frequenz von molekularen Phänotypen durch Selbstbefruchtung und habitatspezifische Selektion beeinflußt. Laufener Seminarbeiträge 2/98 der Bayerischen Akademie für Naturschutz und Landschaftspflege (ANL), p. 39–43.

  • Bahl, A., Pfenninger, M., Bamberger, H., Frye, M., & Streit, B. (1996). Survival of snails in fragmented landscapes. In Settele, J., Margules, C., Poschlod, P., & Henle, K. (eds.), Species Survival in Fragmented Landscapes, Kluwer Academic, Dordrecht, The Netherlands, pp. 329–343.

    Google Scholar 

  • Black, W. C. IV (1995). FORTRAN programs for the analysis of RAPD-PCR markers in populations, Colorado State University, Ft. Collins.

    Google Scholar 

  • Boileau, M. G., Hebert, P. D. N., & Schwartz, S. S. (1992). Non-equilibrium gene frequency divergence: Persistent founder effects in natural populations. J. Evol. Biol. 5:25–39.

    Google Scholar 

  • Cornuet, J. M., & Luikart, G. (1997). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014.

    Google Scholar 

  • De Wolf, H., Backeljau, T., & Verhagen, R. (1998). Congruence between allozyme and RAPD data in assessing macrogeographical genetic variation in the periwinkle Littorina striata (Mollusca, Gastropoda). Heredity 81:486–492.

    Google Scholar 

  • Felsenstein, J. (1995). PHYLIP (Phylogeny Inference Package), University of Washington, Washington, DC.

    Google Scholar 

  • Fischer, S., Poschlod, P., & Beinlich, B. (1996). Experimental studies on the dispersal of plants and animals by sheep in calcareous grasslands. J. Appl. Ecol. 33:1206–1222.

    Google Scholar 

  • Fisz, M. (1970). Wahrscheinlichkeitsrechnung und mathematische Statistik. 5, Auflage, Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  • Frankham, R. (1995). Inbreeding and extinction: A threshhold effect. Conserv. Biol. 9:729–799.

    Google Scholar 

  • Gibbs, H. L., Prior, K. A., & Weatherhead, P. J. (1994). Genetic analysis of populations of threatened snake species using RAPD markers. Mol. Ecol. 3:329–337.

    Google Scholar 

  • Gustincich, S., Manfioletti, G., Del Sal, C., Schneider, C., & Carninci, C. (1991). A fast method for high-quality genomic DNA extraction from whole human blood. BioTechniques 11:298–302.

    PubMed  Google Scholar 

  • Heller, J., & Dolev, A. (1994). Biology and population dynamics of the crevice-dwelling land snail, Cristataria genezarethana (Clausiliidae). J. Mol. Stud. 60:33–46.

    Google Scholar 

  • Henle, K., Poschlod, P., Margules, C., & Settele, J. (1996). Species survival in relation to habitat quality, size, and isolation: Summary conclusions and future directions. In Settele, J., Margules, C., Poschlod, P., & Henle, K. (eds.), Species Survival in Fragmented Landscapes, Kluwer Academic, Dordrecht, The Netherlands pp. 373–381.

    Google Scholar 

  • Huff, D. R., Peakall, R., & Smouse, P. E. (1993). RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt.) Engelm.]. Theor. Appl. Genet. 86:927–934.

    Google Scholar 

  • Johnson, M. S., & Black, R. (1995). Neighbourhood size and the importance of barriers to gene flow in an intertidal snail. Heredity 75:142–154.

    Google Scholar 

  • Kartavtsev, Y. F., Sitnikow, A. V., Nikiforov, S. M., & Chichvarkhin, A. V. (1998). Allozyme and morphometric variation in the predatory mollusk Nucella heyseana (Mollusca, Gastropoda) in normal and polluted environments. Russ. J. Genet. 34:1209–1216.

    Google Scholar 

  • Kempermann, T. C. M. (1992). Systematics and evolutionary history of the Albinaria species from the Ionian islands of Kephallinia and Ithaka (Gastropoda Pulmonata: Clausiliidae). Universal Book Services, Leiden, The Netherlands.

    Google Scholar 

  • Kerney, M. P., Cameron, R. A. D., & Jungbluth, J. H. (1983). Die Landschnecken Nord-und Mitteleuropas, Paul Parey, Hamburg, Germany.

    Google Scholar 

  • Kimberling, D. N., Ferreira, A. R., Shuster, S. M., & Keim, P. (1996). RAPD marker estimation of the genetic structure among isolated northern leopard frog populations in the south-western USA. Mol. Ecol. 5:521–529.

    PubMed  Google Scholar 

  • Liao, L. C., & Hsiao, J. Y. (1998). Relationship between population genetic structure and riparian habitat as revealed by RAPD analysis of the rheophyte Acorus gramineus Soland. (Araceae) in Taiwan. Mol. Ecol. 7:1275–1281.

    Google Scholar 

  • Lynch, M., & Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3:91–99.

    Google Scholar 

  • Manly, B. F. J. (1993). RT—A program for randomization testing. The Centre for Application of Statistics and Mathematics, University of Otago, Dunedin, New Zealand.

    Google Scholar 

  • Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27:209–220.

    PubMed  Google Scholar 

  • McCauley, D. E. (1991). Genetic consequences of local population extinction and recolonization. Trends Ecol. Evol. 6:5–8.

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.

    Google Scholar 

  • Nurbaev, S. D., & Balanovskaya, E. V. (1998). Interpopulation diversity of the gene pool: Beta-distribution of Wright's FST Statistics. Russ. J. Genet. 34:837–847.

    Google Scholar 

  • Ohta, T. (1982a). Linkage disequilibrium with the island model. Genetics 101:139–155.

    Google Scholar 

  • Ohta, T. (1982b). Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 79:1940–1944.

    Google Scholar 

  • Pascual, M., Balanya, J., Latorre, A., & Serra, L. (1997). Analysis of the variability of Drosophila azteca and D. athabasca populations revealed by randomly amplified polymorphic DNA. J. Zool. Syst. Evol. Res. 35:159–164.

    Google Scholar 

  • Pfenninger, M., & Bahl, A. (1997). Influence of habitat size on the viability of spatially structured populations of the land snail Trochoidea geyeri. Verh. Ges. ökol. 27:469–473.

    Google Scholar 

  • Pfenninger, M., Bahl, A., & Streit, B. (1996). Isolation by distance in a population of a small land snail Trochoidea geyeri: Evidence from direct and indirect methods. Proc. R. Soc. Lond. B 263:1211–1217.

    Google Scholar 

  • Piry, S., Luikart, G., & Cornuet, J. M. (1999). BOTTLENECK: A computer programm for detecting recent reductions in the effective population size using allele frequency Data. J. Hered. 90:502–503.

    Google Scholar 

  • Pulliam, H. R. (1988). Sources, sinks, and population regulation. Am. Nat. 132:652–661.

    Google Scholar 

  • Schäfer, M. A., Hille, A., & Uhl, G. B. (2001). Geographical patterns of genetic subdivision in the cellar spider Pholcus phalangioides (Araneae). Heredity 86:94–102.

    PubMed  Google Scholar 

  • Schilthuizen, B. (1994). Reproductive isolation in snails of the genus Albinaria (Gastropoda: Clausiliidae). Biol. J. Linnean Soc. 52:317–324.

    Google Scholar 

  • Schilthuizen, B., & Gittenberger, E. (1996). Allozyme variation in some Cretan Albinaria (Gastropoda): Paraphyletic species as natural phenomena. In Taylor, J. (ed.), Origin and Evolutionary Radiation of the Mollusca, Oxford University Press, London, pp. 301–311.

    Google Scholar 

  • Schilthuizen, B., & Lombaerts, M. (1994). Population structure and levels of gene flow in the Mediterranean land snail Albinaria corrugata (Pulmonata: Clausiliidae). Evolution 48:577–586.

    Google Scholar 

  • Slatkin, M. (1985). Gene flow in natural populations. Ann. Rev. Ecol. Syst. 16:393–430.

    Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1981). Biometry, Freeman, San Francisco.

    Google Scholar 

  • Stothard, J. R., Mgeni, A. F., Alawi, K. S., Savioli, L., & Rollinson, D. (1997). Observations on shell morphology, enzymes and random amplified polymorphic DNA (RAPD) in Bulinus africanus group snails (Gastropoda: Planorbidae) in Zanzibar. J. Mol. Stud. 63:489–503.

    Google Scholar 

  • Swofford, D. L., & Selander, R. B. (1981). BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72:286–293.

    PubMed  Google Scholar 

  • Tenzer, C. (2000). Die passive Ausbreitung terrestrischer Wirbelloser über Fließgewässer unter besonderer Berücksichtigung der Landgehäuseschnecken. Verh. Ges. ökol. 30:74.

    Google Scholar 

  • Van de Peer, Y, and De Wachter, R. (1994). TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 10:569–570.

    PubMed  Google Scholar 

  • Vernon, J.G., Jones, C., & Noble, L. R. (1995). Random amplified polymorphic DNA (RAPD) markers reveal cross-fertilisation in Biomphalaria glabrata (Pulmonata: Basommatophora). J. Mol. Stud. 61:455–465.

    Google Scholar 

  • Wahlund, S. (1928). Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106.

    Google Scholar 

  • Weir, B. S., & Cockerham, C. C. (1984). Estimationg F-statistics for the analysis of population structure. Evolution 38:1358–1370.

    Google Scholar 

  • Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18:7213–7218.

    PubMed  Google Scholar 

  • West, D. F., & Black, W. C., IV (1998). Breeding structure of three snow pool Aedes mosquito species in northern Colorado. Heredity 81:371–380.

    PubMed  Google Scholar 

  • Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–6535.

    PubMed  Google Scholar 

  • Wirth, T., Baur, A., & Baur, B. (1997). Mating system and genetic variability in the simultaneously hermaphroditic terrestrial gastropod Balea perversa on the Baltic island of ödland, Sweden. Hereditas 126:199–209.

    Google Scholar 

  • Wright, S. (1978). Variability Within and Among Natural Populations, Vol. 4: Evolution and the Genetics of Populations, University of Chicago Press, Chicago.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hille, A., Liebal, K., Mosch, B. et al. An RAPD (Random Amplified Polymorphic DNA) Analysis of Genetic Population Structure of Balea biplicata (Gastropoda: Clausiliidae) in Fragmented Floodplain Forests of the Elster/Saale Riparian System. Biochem Genet 41, 175–199 (2003). https://doi.org/10.1023/A:1023329711209

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023329711209

Navigation