Skip to main content
Log in

Diatom-inference models for surface-water temperature and salinity developed from a 57-lake calibration set from the Sierra Nevada, California, USA

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Physical, chemical, and biological data were collected from a suite of 57 lakes that span an elevational gradient of 1360 m (2115 to 3475 m a.s.l.) in the eastern Sierra Nevada, California, USA as part of a multiproxy study aimed at developing transfer functions from which to infer past drought events. Multivariate statistical techniques, including canonical correspondence analysis (CCA), were used to determine the main environmental variables influencing diatom distributions in the study lakes. Lakewater depth, surface-water temperature, salinity, total Kjeldahl nitrogen, and total phosphorus were important variables in explaining variance in the diatom distributions. Weighted-averaging (WA) and weighted-averaging partial least squares (WA-PLS) were used to develop diatom-based surface-water temperature and salinity inference models. The two best diatom-inference models for surface-water temperature were developed using simple WA and inverse deshrinking. One model covered a larger surface-water temperature gradient (13.7 °C) and performed slightly poorer (r2 = 0.72, RMSE = 1.4 °C, RMSEPjack = 2.1 °C) than a second model, which covered a smaller gradient (9.5 °C) and performed slightly better (r2 = 0.89, RMSE = 0.7 °C, RMSEPjack = 1.5 °C). The best diatom-inference model for salinity was developed using WA-PLS with three components (r2 = 0.96, RMSE = 4.06 mg L−1, RMSEPjack = 11.13 mg L−1). These are presently the only diatom-based inference models for surface-water temperature and salinity developed for the southwestern United States. Application of these models to fossil-diatom assemblages preserved in Sierra Nevada lake sediments offers great potential for reconstructing a high-resolution time-series of Holocene and late Pleistocene climate and drought for California.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson N.J. 2000. Miniview: diatoms, temperature and climate change. Eur. J. Phycol. 35: 307-314.

    Google Scholar 

  • Anderson R.S. 1990. Holocene forest development and paleoclimates within the central Sierra Nevada, California. J. Ecol. 78: 470-489.

    Google Scholar 

  • Anderson R.S., Smith S. and Koehler P.A. 1997. Distribution of sites and radiocarbon dates in the Sierra Nevada: implications for paleoecological prospecting. Radiocarbon 39: 121-137.

    Google Scholar 

  • Battarbee R.W., Jones V.J., Flower R.J., Cameron N.G., Bennion H., Carvalho L. et al. 2001. Diatoms. In: Birks H.J.B., Last W.M. and Smol J.P. (eds), Tracking Environmental Change Using Lake Sediments.Volume 3: Terrestrial, Algal, and Silicious Indicators. Kluwer Academic Publishers, Dordrecht, pp. 155-202.

    Google Scholar 

  • Battarbee R.W., Thompson R., Vatalan J., Grytnes J.A. and Birks H.J.B. 2002. Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. J. Paleolim. 28: 1-6.

    Google Scholar 

  • Bigler C., Hall R.I. and Renberg I. 2000. A diatom training set for paleoclimatic inferences from lakes in northern Sweden. Verh. int. Ver. Limnol. 27: 1174-1182.

    Google Scholar 

  • Bigler C. and Hall R.I. 2002. Diatoms as indicators of climatic and limnological change in Swedish Lapland: a 100-lake calibration set and its validation for paleoecological reconstructions. J. Paleolim. 27: 97-115.

    Google Scholar 

  • Birks H.J.B. 1994. The importance of pollen and diatom taxonomic precision in quantitative palaeoenvironmental reconstructions. Rev. Palaeobot. Palynol. 83: 107-117.

    Google Scholar 

  • Birks H.J.B. 1995. Quantitative paleoenvironmental reconstructions. In: Maddy D. and Brew J.S. (eds), Statistical Modelling of Quaternary Science Data. Quaternary Research Association, Cambridge Technical Guide 5., pp. 161-254.

  • Birks H.J.B. 1998. Numerical tools in palaeolimnology—progress, potentialities, and problems. J. Paleolim. 20: 307-332.

    Google Scholar 

  • Bloom A.M. 2001. Diatoms in eastern Sierra Nevada lake sediments: quantitative indicators of temperature and salinity, M.Sc., Thesis, University of Utah, Department of Geography, Salt Lake City, 128 pp.

    Google Scholar 

  • Bradford G.R., Page A.L. and Straughan I.R. 1981. Are Sierra lakes becoming more acidic? Calif. Ag. May-June: 6-7.

  • Bradshaw E.G., Jones V.J., Birks H.J.B. and Birks H.H. 2000. Diatom response to late-glacial and early Holocene environmental changes at Krå kenes, western Norway. J. Paleolim. 23: 21-34.

    Google Scholar 

  • Brodersen K.P. and Lindegaard C. 2000. The influence of temperature on emergence periods of Chironomidae (Diptera) from a shallow Danish Lake. In: Hoffrichter O. (ed.), Late 20th Century Research on Chironomidae: An Anthology from the 13th International Symposium on Chironomidae. ShakerVerlag, Aachen, pp. 313-324.

    Google Scholar 

  • Brooks S.J. and Birks H.J.B. 2000. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Krå kenes lake, western Norway. J. Paleolim. 23: 77-89.

    Google Scholar 

  • Butler M.G. 1980. Emergence phenologies of some arctic Alaskan Chironomidae. In: Murray D.A. (ed.), Chironomidae. Ecology, Systematics, Cytology and Physiology. Pergamon Press, New York, pp. 307-314.

    Google Scholar 

  • Clark D. and Gillespie A. 1997. Timing and significance of late-glacial and Holocene cirque glaciation in the Sierra Nevada, California. Quat. Int. 38: 21-38.

    Google Scholar 

  • Cumming B.F., Wilson S.E., Hall R.I. and Smol J.P. 1995. Diatoms from British Columbia (Canada) lakes and their relationship to salinity, nutrients and other limnological variables. Bibliotheca Diatomologica 31. J. Cramer, Stuttgart.

    Google Scholar 

  • Danks H.V. and Oliver D.R. 1972. Seasonal emergence of some high arctic Chironomidae (Diptera). Can. Ent. 104: 661-86.

    Google Scholar 

  • Dauta A., Devaux J., Piquemal F. and Boumnich L. 1990. Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207: 221-226.

    Google Scholar 

  • Davis O.K., Anderson R.S., Fall P.L., O'Rourke M.K. and Thompson R.S. 1985. Palynological evidence for early Holocene aridity in the southern Sierra Nevada, California. Quat. Res. 24: 322-332.

    Google Scholar 

  • Environment Canada 1996a. Manual of analytical methods. Volume 1: Major ions and nutrients. The National Laboratory of Environmental Testing, Canada Centre for Inland Waters, Burlington, 661 pp.

    Google Scholar 

  • Environment Canada 1996b. Manual of analytical methods. Volume 2: Trace metals. The National Laboratory of Environmental Testing, Canada Centre for Inland Waters, Burlington, 446 pp.

    Google Scholar 

  • Environmental Systems Research Institute 2001. ArcGIS 8.1 computer software. Environmental Systems Research Institute, Red-lands.

  • Fritz S.C., Juggins S. and Battarbee R.W. 1993. Diatom assemblages and ionic characterization of lakes in the northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Can. J. Fish. aquat. Sci. 50: 1844-1856.

    Google Scholar 

  • Fritz S.C., Cumming B.F., Gasse F. and Laird K.R. 1999. Diatoms as indicators of hydrologic and climatic change in saline lakes. In: Stoermer E.F. and Smol J.P. (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, pp. 41-72.

    Google Scholar 

  • Glew J.R. 1988. A portable extruding device for close interval sectioning of unconsolidated core samples. J. Paleolim. 1: 235-239.

    Google Scholar 

  • Glew J.R. 1991. Miniature gravity corer for recovering short sediment cores. J. Paleolim. 5: 285-287.

    Google Scholar 

  • Graumlich L.J. 1993. A 1000-year record of temperature and precipitation in the Sierra Nevada. Quat. Res. 39: 249-255.

    Google Scholar 

  • Gregory-Eaves I., Smol J.P., Finney B.P. and Edwards M.E. 1999. Diatom-based transfer functions for inferring past climate and environmental changes in Alaska, U.S.A. Arct. Antarct. Alp. Res. 31: 353-365.

    Google Scholar 

  • Hall R.I. and Smol J.P. 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwat. Biol. 27: 417-434.

    Google Scholar 

  • Hartig J.H. and Wallen D.G. 1986. The influence of light and temperature on growth and photosynthesis of Fragilaria crotonensis Kitton. J. freshwat. Ecol. 3: 371-382.

    Google Scholar 

  • Holmes R.W., Whiting M.C. and Stoddard J.L. 1989. Changes in diatom-inferred pH and acid neutralizing capacity in a dilute, high elevation, Sierra Nevada lake since A.D. 1825. Freshwat. Biol. 21: 295-310.

    Google Scholar 

  • Jones V.J. and Juggins S. 1995. The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshwat. Biol. 34: 433-445.

    Google Scholar 

  • Joynt E.H. III and Wolfe A.P. 2001. Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada) and reconstruction of summer water temperature. Can. J. Aquat. Sci. 58: 1222-1243.

    Google Scholar 

  • Juggins S. and ter Braak C.J.F. 1993. CALIBRATE version 0.3: a program for species environment calibration by (weighted averaging) partial least squares regression. Environmental Change Research Centre, University College London, London.

    Google Scholar 

  • Kilham S.S., Theriot E.C. and Fritz S.C. 1996. Linking planktonic diatoms and climate change in the large lakes of theYellowstone ecosystem using resource theory. Limnol. Oceanogr. 41: 1052-1062.

    Google Scholar 

  • Koehler P.A. and Anderson R.S. 1994. The paleoecology and stratigraphy of Nicholas Meadow, Sierra Nevada National Forest, California, USA. Palaeogeogr. Palaeoclim. Palaeoecol. 122: 1-17.

    Google Scholar 

  • Konrad S.K. and Clark D.H. 1998. Evidence for an early neoglacial glacier advance from rock glaciers and lake sediments in the Sierra Nevada, California, U.S.A. Arct. Alp. Res. 30: 272-284.

    Google Scholar 

  • Konstantinove A.S. 1958. Influence of temperature on the rate of development and growth of chironomids. Doklady Akadamii Nauk SSSR 120: 1362-1365.

    Google Scholar 

  • Korhola A., Weckström J., Holström L. and Erästö P. 2000. A quantitative Holocene climate record from diatoms in northern Fennoscandia. Quat. Res. 54: 284-294.

    Google Scholar 

  • Krammer K. and Lange-Bertalot H. 1986-1991. Bacillariophyceae. In: Ettl H., Gerloff J., Heynig H. and Mollenhauer D. (eds), Süβuwasserflora von Mitteleuropa. Gustav Fisher Verlag, Stuttgart/Jena Band 2(1-4).

    Google Scholar 

  • Landers D.H., Eilers J.M., Brakke D.F., Overton W.S., Kellar P.E., Silverstein M.E. et al. 1987. Western lake survey, phase 1. Characteristics of lakes in western United States: Vol. I. Population descriptions and physico-chemical relationships. U.S. Environmental Protection Agency, Washington D.C., EPA-600/3-86/054a.

    Google Scholar 

  • Larocque I., Hall R.I. and Grahn E. 2001. Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J. Paleolim. 26: 307-322.

    Google Scholar 

  • Leavitt P.R., Vinebrooke R.D., Donald D.B., Smol J.P. and Schindler D.W. 1997. Past ultraviolet radiation environments in lakes derived from fossil pigments. Nature 388: 457-459.

    Google Scholar 

  • Leydecker A., Sickman J.O. and Melack J.M. 1999. Episodic lake acidification in the Sierra Nevada, California.Water Resour. Res. 35: 2793-2804.

    Google Scholar 

  • Line J.M., ter Braak C.J.F. and Birks H.J.B. 1994. WACALIB version 3.3—a computer program to reconstruct environmental variables from fossil assemblages by weighted averaging and to derive sample-specific errors of prediction. J. Paleolim. 10: 147-152.

    Google Scholar 

  • Lloyd A.H. and Graumlich L.J. 1997. Holocene dynamics of treeline forests in the Sierra Nevada. Ecology 78: 1199-1210.

    Google Scholar 

  • Lotter A.F., Birks H.J.B., Hofmann W. and Marchetto A. 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395-420.

    Google Scholar 

  • MacKey A.P. 1977. Growth and development of larval Chironomidae. Oikos 28: 270-275.

    Google Scholar 

  • Major J. 1988. California climate in relation to vegetation. In: Barbour M.J. and Major J. (eds), Terrestrial Vegetation of California. Special Publication 9. California Native Plant Society, Davis, pp. 11-74.

    Google Scholar 

  • Mitchell V.L. 1976. The regionalization of climate in the western United States. J. Appl. Meteorol. 15: 920-927.

    Google Scholar 

  • Mock C.J. 1996. Climate controls and spatial variations of precipitation in the western United States. J. Clim. 9: 1111-1125.

    Google Scholar 

  • Moser K.A., Korhola A., Weckström J., Blom T., Pienitz R., Smol J.P. et al. 2000. Paleohydrology inferred from diatoms in northern latitude regions. J. Paleolim. 24: 93-107.

    Google Scholar 

  • Olander H., Birks H.J.B., Korhola A. and Blom T. 1999. An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9: 279-294.

    Google Scholar 

  • Patrick R. 1971. The effects of increasing light and temperature on the structure of diatom communities. Limnol. Oceanogr. 16: 405-21.

    Google Scholar 

  • Patrick R. 1977. Ecology of freshwater diatoms and diatom communities. In: Werner D. (ed.), The Biology of Diatoms, Botanical Monographs Vol. 13. Blackwell, Oxford, pp. 284-332.

    Google Scholar 

  • Pienitz R., Smol J.P. and Birks H.J.B. 1995. Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. J. Paleolim. 13: 21-49.

    Google Scholar 

  • Porinchu D.F., MacDonald G.M., Bloom A.M. and Moser K.A. 2002. The modern distribution of chironomid sub-fossils (In-secta: Diptera) in the Sierra Nevada, California: potential for paleoclimatic reconstructions. J. Paleolim. 28: 355-375.

    Google Scholar 

  • Porinchu D.F. and MacDonald G.M. The use and application of freshwater midges (Chironomidae: Insecta: Diptera) in geographical research. Prog. Phys. Geogr. (in press).

  • Roberts D. and McMinn A. 1998. A weighted-averaging regression and calibration model for inferring lakewater salinity from fossil diatom assemblages in saline lakes of the Vestfold Hills: a new tool for interpreting Holocene lake histories in Antarctica. J. Paleolim. 19: 99-113.

    Google Scholar 

  • Rosén P., Hall R., Korsman T. and Renberg I. 2000. Diatom transfer-functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden. J. Paleolim. 24: 109-123.

    Google Scholar 

  • Scuderi L.A. 1993. A 2000-year tree ring record of annual temperatures in the Sierra Nevada Mountains. Science 259: 1433-1436.

    Google Scholar 

  • Smith S.J. and Anderson R.S. 1992. Late Wisconsin paleoecological record from Swamp Lake, Yosemite National Park, California. Quat. Res. 38: 91-102.

    Google Scholar 

  • Smol J.P. and Cumming B.F. 2000. Tracking long term changes in climate using algal indicators in lake sediments. J. Phycol. 36: 986-1011.

    Google Scholar 

  • Sylvestre F. 2002. A high-resolution diatom reconstruction between 14 21,000 and 17,000 14C yr BP from the southern Bolivian Antiplano (18-23 º S). J. Paleolim. 27: 45-57.

    Google Scholar 

  • Sylvestre F., Servant-Vildary S. and Roux M. 2001. Diatom-based ionic concentration and salinity models from then south Bolivian Altiplano (15-23 º S). J. Paleolim. 25: 279-295.

    Google Scholar 

  • ter Braak C.J.F. 1995. Non-linear methods for multivariate statistical calibration and their use in palaeoecology: a comparison of inverse (k-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometrics and Intelligent Laboratory Systems 28: 165-180.

    Google Scholar 

  • ter Braak C.J.F. and Juggins S. 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269: 485-502.

    Google Scholar 

  • ter Braak C.J.F. and Šmilauer P. 1998. CANOCO Reference Manual and User's Guide to CANOCO for Windows: Software for Canonical Community OrdinationVersion 4. Microcomputer-Power, Ithaca, 351 pp.

  • ter Braak C.J.F. and Šmilauer P. 1999. CANOCO for Windows Version 4.02. Center for Biometry Wageningen, CPRO-DLO, Wageningen.

  • Vyverman W. and Sabbe K. 1995. Diatom-temperature transfer functions based on the altitudinal zonation of diatom assemblages in Papua New Guinea: a possible tool in the reconstruction of regional palaeoclimatic changes. J. Paleolim. 13: 65-77.

    Google Scholar 

  • Walker I.R., Levesque A.F., Cwynar L.C. and Lotter A.F. 1997. An expanded surface-water paleotemperature inference model for use with fossil midges in eastern Canada. J. Paleolim. 18: 165-178.

    Google Scholar 

  • Walker I.R., Smol J.P., Engstrom D.R. and Birks H.J.B. 1991. An assessment of Chironomidae as quantitative indicators of past climate change. Can. J. Fish. Aquat. Sci. 48: 975-987.

    Google Scholar 

  • Weckström J., Korhola A. and Blom T. 1997a. The relationship between diatoms and water temperature in thirty subarctic Fennoscandian lakes. Arct. Alp. Res. 29: 75-92.

    Google Scholar 

  • Weckström J., Korhola A. and Blom T. 1997b. Diatoms as quantitative indicators of pH and water temperature in subarctic Fennoscandian lakes. Hydrobiologia 347: 171-184.

    Google Scholar 

  • Whiting M.C., Whitehead D.R., Holmes R.W. and Norton S.A. 1989. Paleolimnological reconstruction of recent acidity changes in four Sierra Nevada lakes. J. Paleolim. 2: 285-304.

    Google Scholar 

  • Williams M.W. and Melack J.M. 1991. Precipitation chemistry in and ionic loading to an alpine basin, Sierra Nevada. Water Resour. Res. 27: 1563-1574.

    Google Scholar 

  • Wilson S.E., Cumming B.F. and Smol J.P. 1994. Diatom-salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: the development of diatom-based models for paleosalinity and paleoclimatic reconstructions. J. Paleolim. 12: 197-221.

    Google Scholar 

  • Wilson S.E., Cumming B.F. and Smol J.P. 1996. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219-lake data set from western North America. Can. J. Fish. Aquat. Sci. 53: 1580-1594.

    Google Scholar 

  • Wolin J.A. and Duthie H.C. 1999. Diatoms as indicators of water level change in freshwater lakes. In: Stoermer E.F. and Smol J.P. (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, pp. 183-202.

    Google Scholar 

  • Wunsam S., Schmidt R. and Klee R. 1995. Cyclotella-taxa (Bacillariophyceae) in lakes of the alpine region and their relationship to environmental variables. Aquat. Sci. 57: 360-386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloom, A.M., Moser, K.A., Porinchu, D.F. et al. Diatom-inference models for surface-water temperature and salinity developed from a 57-lake calibration set from the Sierra Nevada, California, USA. Journal of Paleolimnology 29, 235–255 (2003). https://doi.org/10.1023/A:1023297407233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023297407233

Navigation