Journal of Paleolimnology

, Volume 29, Issue 2, pp 167–178 | Cite as

Holocene lake-level changes and their reflection in the paleolimnological records of two lakes in northern Estonia

  • Jaan-Mati Punning
  • Mihkel Kangur
  • Tiiu Koff
  • Göran Possnert
Article

Abstract

Sediment cores from two neighbouring lakes (Viitna Linajärv and Viitna Pikkjärv) in northern Estonia were studied to determine lake-level fluctuations during the Holocene and their impact on biogeochemical cycling. Organic matter and pollen records dated by radiocarbon and radiolead indicated a water level rise in both lakes during the early Holocene (c. 10 000–8000 BP). A regression followed around 7500 BP and several transgressions occurred during the latter half of the Holocene, c. 6500 and 3000 BP. Human impact during the last centuries has caused short-term lake-level fluctuations and accelerated sediment accumulation in the lakes. The differences in water depth led to variations in sediment formation. During 10 000–8000 BP (Preboreal and Boreal chronozones) mineral-rich sediments with coloured interlayers deposited in L. Linajärv. These sediments indicate intensive erosion from the catchment and oxygen-rich lake, which favoured precipitation of iron oxides and carbonates. Fluctuations in water depth, leaching of nutrients from catchment soils and climatic changes increased the trophy of L. Linajärv around 6000 BP. The subsequent accumulation of gyttja, the absence of CaCO3 and the decrease in both the C/N ratio and phosphorus content in the sediments also indicate anoxic conditions in the hypolimnion. The similarity in the development of L. Linajärv and L. Pikkjärv and their proximity made it possible to discern the impact of water depths changes on biogeochemical cycling in lakes.

Estonia Lake-level fluctuation Lake sediments Lithology Organic geochemistry Vegetation history 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleby P.G., Richardson N. and Nolan P.J. 1992. Self-absorbtion corrections for well-type germanium detectors. Nucl. Instr. and Methods 71: 228-233.Google Scholar
  2. Bengtsson L. and Enell M. 1986. Chemical analysis. In: Berglund B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons, Chichester-New York, pp. 423-451.Google Scholar
  3. Chambers F.M. (ed.) 1993. Climate Change and Human Impact on the Landscape. Chapman and Hall, 303 pp.Google Scholar
  4. Cuddinngton K. and Leavitt PR. 1999. An individual-based model to pigment flux in lakes: implications for organic biogeochemistry and paleoecology. Can. J. Fish. Aquat. Sci. 56: 1964-1977.Google Scholar
  5. Dean W.E. 1999. The carbon cycle and biogeochemical dynamics in lake sediments. J. Paleolim. 21: 375-393.Google Scholar
  6. Digerfeldt G. 1986. Studies on past lake-level fluctuations. In: Berglund B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. JohnWiley and Sons, Chichester-New York, pp. 127-143.Google Scholar
  7. Digerfeldt G. and Hakansson H. 1993. The Holocene paleolimnology of Lake Sämbosjon. Southwestern Sweden. J. Paleolim. 8: 189-210.Google Scholar
  8. Engstrom D.R., Swain E.B. and Kingston J.C. 1985. A paleolimnological record of human disturbance from Harvey's Lake, Vermont: geochemistry, pigments and diatoms. Freshw. Biol. 15: 261-288.Google Scholar
  9. Harrison S.P. and Digerfeldt G. 1993. European lakes as palaeohydrological and palaeoclimatic indicators. Quat. Sci. Rev. 12: 233-248.Google Scholar
  10. Hassan K.M., Swinehart J.B. and Spalding R.F. 1997. Evidence for Holocene environmental change from C/N ratio, and δ13C and δ5N values in Swan Lake sediments, western Sand Hills, Nebraska. J. Paleolim. 18: 121-130.Google Scholar
  11. Hieltjes A.H.M. and Lijklema L. 1980. Fractionation of inorganic phosphates in calcareous sediments. J. Environ. Qual. 9: 405-407.Google Scholar
  12. Laasimer L. 1965. Eesti NSV tairnkate. Tallinn, Valgus, 397 pp. [Vegetation of the Estonian SSR. In Estonian with English summary].Google Scholar
  13. Lami A., Marchetto A., Lobianco R., Appleby P.G. and Guilizzoni P. 2000. The last ca 2000 years palaeolimnology of Lake Gandia (N. Italy): inorganic geochemistry, fossil pigments and temperature time-series analyses. J. Limnol. 59: 31-46.Google Scholar
  14. Leavitt PR. 1993. A review offactors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J. Paleolim. 9: 109-127.Google Scholar
  15. Moore P. and Webb J.A. 1978. An Illustrated Guide to Pollen Analysis. Hodder and Stoughton, London, Sydney, 133 pp.Google Scholar
  16. Noe-Nygaard N. and Heiberg E.O. 2001. Lake-level changes in the Late Weichselian Lake Tovelde, Mon, Denmark: induced by changes in climate and base level. Palaeogeogr., Palaeoclim., Palaeoecol. 174: 351-382.Google Scholar
  17. Paal J. 1997. Classification of Estonian Vegetation Site Types. Tallinn, Ministry of Environment and UNEP, 297 pp.Google Scholar
  18. Poska A. and Saarse L. 1999. Holocene vegetation and land-use history in the environs of Lake Kahala, northern Estonia. Veget. Hist. Archaeobot. 8: 185-197.Google Scholar
  19. Punning J.-M. and Koff T. 1996. Does the climate in the future have analogues in the past? In: Punning J.-M. (ed.), Estonia in the System of Global Climate Change Vol. 4. Inst. of Ecology, Tallinn, Publ., pp. 75-83.Google Scholar
  20. Punning J.-M. and Tõ ugu K. 2000. C/N ratio and fossil pigments in sediments of some Estonian lakes: an evidence of human impact and Holocene environmental change. Environ. Monit. and Assessm. 64: 549-567.Google Scholar
  21. Punning J.-M., Ilomets M., Koff T., Paap Ñ and Rajamäe R. 1987. On the development of Lake Ñmarjarv (NE Estonia) in the Holocene. In: Raukas A. and Saarse L. (eds), Palaeoecology of the temperate zone. II. Lakes. Tallinn, pp. 123-136.Google Scholar
  22. Saarse L. 1992. Viitna mõ hnastiku ja järvede kujunemisest. Eesti Geograafia Seltsi Aastaraamat 27. Valgus, Tallinn, [On the development of Viitna Kame Field and lakes. Year-book of the Estonian Geographical Society 27. In Estonian with English Summary], pp. 30-43.Google Scholar
  23. Saarse L. and Harrison S.P. 1992. Holocene lake-level changes in the Eastern Baltic region. In: Kaare T., Mardiste H., Merikaiju L. and Punning J.-M. (eds), Estonia: Man and Nature. Tallinn, pp. 6-20.Google Scholar
  24. Saarse L., Poska A., Kaup E. and Heinsalu A. 1998. Holocene environmental events in the Viitna area, North Estonia. Proc. Estonian Acad. Sci. Geol. 47: 31-44.Google Scholar
  25. Shapiro J., Edmonson W.T. and Allison D.E. 1971. Changes in the chemical composition of sediments of Lake Washington, 1958-1970. Limnol. Oceanogr. 16: 437-452.Google Scholar
  26. Street-Perrot F.A. and Harrison S.P. 1985. Lake levels and climate reconstructions. In: Hecht A.D. (ed.), Paleoclimate Analysis and Modeling. John Wiley and Sons, New-York, pp. 291-340.Google Scholar
  27. Swain E.B. 1985. Measurement and interpretation of sedimentary pigments. Freshwater Biol. 15: 53-75.Google Scholar
  28. Wetzel R.G. 1983. Limnology. Saunders College Publishing, Fort Worth, Philadelphia, 767 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Jaan-Mati Punning
    • 1
  • Mihkel Kangur
    • 1
  • Tiiu Koff
    • 1
  • Göran Possnert
    • 2
  1. 1.Institute of EcologyTallinn Pedagogical University, Kevade 2TallinnEstonia
  2. 2.Ångstrom LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations