Skip to main content
Log in

Failure probability of borosilicate glass under Hertz indentation load

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The objective of this work is to test the hypothesis that the failure probability prediction model by Fischer-Cripps and Collins can be used without introducing an empirically derived parameter and therefore can serve as a predictive tool. We examined this hypothesis by Hertz cone crack initiation tests of flat borosilicate glass statically loaded through a spherical indenter. The Weibull parameters characterizing the surface flaw distribution were determined from biaxial flexure experiments using specimens with the same surface condition as in the indentation tests. Elastic moduli of the specimens were determined by using ultrasonic methods. In addition, the crack initiation was determined using stereo microscopy at 20× magnification.

The results demonstrated that the model can predict the minimum critical load and cumulative failure probability for small indenters within the 90% confidence level. Therefore, the current work demonstrates that the model can be used as a predictive tool provided the parameters necessary for the model accurately reflect those of the actual sample populations that are used for the experimental setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hertz, J. Reine Angew. Math. 92 (1881) 156; “Translated and Reprinted in English in 'Hertz's Miscellaneous Papers'” (Macmillan & Co., New York, 1896) Ch. 5.

    Google Scholar 

  2. H. Hertz, Verhandlungen des Vereins zur Beforderung des Gewerbe Fleisses 61 (1882) 449; “Translated and Reprinted in English in 'Hertz's Miscellaneous Papers'” (Macmillan & Co., New York, 1896) Chap. 6.

    Google Scholar 

  3. F. Auerbach, Annalen der Physik und Chemie Poggendorff (Leipzig) 43 (1891) 61.

    Google Scholar 

  4. J. P. A. Tillett, Proc. Phys. Soc. B 69 (1956) 47.

    Google Scholar 

  5. A. S. Argon, Y. Hori and E. Orowan, J. Amer. Ceram. Soc. 43(2) (1960) 86.

    Google Scholar 

  6. B. Hamilton and H. Rawson, J. Mech. Phys., Solids 18 (1970) 127.

    Google Scholar 

  7. M. T. Huber, Ann. d. Phys. 43 (1904) 61.

    Google Scholar 

  8. K. L. Johnson, “Contact Mechanics” (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  9. F. C. Frank and B. R. Lawn, Proc. Roy. Soc. A 299 (1967) 291.

    Google Scholar 

  10. R. Mouginot and D. Maugis, J. Mater. Sci. 20 (1985) 4354.

    Google Scholar 

  11. A. C. Fischer-Cripps and R. E. Collins, ibid. 29 (1994) 2216.

    Google Scholar 

  12. A. C. Fischer-Cripps, J. Mater. Sci. 32 (1997) 1277.

    Google Scholar 

  13. S. B. Batdorf and J. G. Crose, J. Appl. Mech. 41 (1974) 459.

    Google Scholar 

  14. S. B. Batdorf and M. L. Heinisch Jr, J. Amer. Ceram. Soc. 61(7/8) 355.

  15. W. G. Brown, “A Load Duration Theory for Glass Design” (National Research Council of Canada, Division of Building Research, Ottawa, Canada, 1972).

    Google Scholar 

  16. A. G. Evans, J. Amer. Ceram. Soc. 61(7/8) (1978) 302.

    Google Scholar 

  17. L. Y. Chao and D. K. Shetty, ibid. 73(7) (1990) 1917.

    Google Scholar 

  18. L. Y. Chao and D. K. Shetty, ibid. 74(2) (1991) 333.

    Google Scholar 

  19. S. M. Wiederhorn etc., ibid. 57 (1974) 336.

    Google Scholar 

  20. S. M. Wiederhorn, etc., in “Fracture Mechanics of Ceramics,” Vol. 2, edited by R. C. Bradt, etc. (Plenum, 1974) p. 829.

  21. K. L. Johnson, J. J. O'Connor and A. C. Woodward, Proc. R. Soc. Lond. A 334 (1973) 95.

    Google Scholar 

  22. B. Dodson, “Weibull Analysis” (ASQ Quality Press, Milwaukee, Wisconsin, 1994) p. 66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Katsube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Katsube, N., Seghi, R.R. et al. Failure probability of borosilicate glass under Hertz indentation load. Journal of Materials Science 38, 1589–1596 (2003). https://doi.org/10.1023/A:1023290618573

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023290618573

Keywords

Navigation