Skip to main content

Development of a Severe Sand-dust Storm Model and its Application to Northwest China

Abstract

A very strong sand-dust storm occurred on 5 May, 1993 in Northwest China. In order to give a detailed description of the evolution of a mesoscale system along with the heavy sand-dust storm, a complex model including improved physicalprocesses and a radiation parameterization scheme was developedbased on a simulation model. The improved model introduced a sand-dust transport equation as well as a lifting transportmodel, sand-dust aerosols and radiation parameterization scheme.Using this model, the super sand-dust storm case on 5 May was simulated. Results indicated that the coupled mesoscale model successfully simulated the mesoscale vortex, its strong upwardmovement and the warm core structure of PBL. The generation anddevelopment of these structures were consistent with that of the sand-dust storm and dry squall-line (which was different withnormal squall-line). Simulated sand-dust concentration and its radiative effect corresponded with observation data. The radiative effect of sand-dust aerosols caused the air to heat on the top of aerosol layer with a heating rate amounting to 2 K hr-1. As a result, solar radiation flux that reached the surface, netradiation flux and surface temperature all suddenly went down. The temperature gradient across the cold front became obviouslylarger. Therefore, enhancing the development of the mesoscalesystem. The simulation generally reflected features during thesquall-line passage of this strong sand-dust storm.

This is a preview of subscription content, access via your institution.

References

  1. Anthes, R. A. and Warner, T. T.: 1978, ‘Development of hydrodynamic models suitable for air pollution and other mesometeorological studies’, Mon. Wea. Rew. 106, 1045–1078.

    Google Scholar 

  2. Anthes, R. A., Hsie, E. Y. and Kuo, Y. H.: 1987, ‘Description of the Penn State/NCAR Mesoscale Model Version 4(MM4)’, NCAR Technical Note, NCAR/TC-282 + STR., 66 pp.

  3. Carlson, T. N. and Benjamin, S. G.: 1980, ‘Radiative heating rates for Saharan dust’, J. Atmos. Sci. 37, 193–213.

    Google Scholar 

  4. Carlson, T. N. and Caverly, R. S.: 1977, ‘Radiative characteristics of Saharan dust at solar wavelengths’, J. Geophys. Res. 82, 3141–3152.

    Google Scholar 

  5. Chen, S. J., Kuo, Y. H., Ming, W. and Ying, H.: 1995, ‘The effect of dust radiative heating on lowlevel frontogenesis’, J. Atmos. Sci. 52, 1414–1420.

    Google Scholar 

  6. Cheng, L., Ma, Y. and Liu, C. T.: 1995, ‘Influence of mesoscale model resolution on the evolution simulation of the '93.5' black storm’, WMO/TD 699, 323–328.

    Google Scholar 

  7. Cheng, L. and Ma, Y.: 1996, ‘The developing structure of a black storm and its numerical experiment of different model resolution’, Quarter. J. Appl. Meteor. 7, 385–395 (in Chinese).

    Google Scholar 

  8. Chung, Y. S. and Yoon, M. B.: 1996, ‘On the occurrence of yellow sand and atmospheric loadings’, Atmos. Envir. 30, 2387–2397.

    Google Scholar 

  9. Dickinson, R. E., Henderson-Sellers, A. and Wilson, M. S.: 1986, ‘Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model’, NCAR Technical Note, NCAR/TN-275 + STR, Boulder, Colorado, 69 pp.

  10. Feng, X. and Cheng, L.: 1997, Diagnosis of heat and moisture budgets of the '93.5' black storm during its development’, Meteor. Mon. 23, 8–14 (in Chinese).

    Google Scholar 

  11. Holtslag, A. A. M., de Bruijin, E. I. F. and Pan, H. L.: 1990, ‘A high resolution air mass transformation model for short-range weather forecasting’, Mon. Wea. Rev. 118, 1561–1575.

    Google Scholar 

  12. Hu, Y. Q. and Guang, T. N.: 1997, Micrometeorological characteristics and local triggering mechanism of strong dust storm’, Scientia Atmos. Sinica 21, 581–589 (in Chinese).

    Google Scholar 

  13. Jiang, J. X.: 1995, ‘A study of formation for 'black storm' using GMS-4 imagery’, Quarter. J. Appl. Meteor. 6, 177–184 (in Chinese).

    Google Scholar 

  14. Karyampudi, V. M. and Carlson, T. N.: 1988, Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances’, J. Atmos. Sci. 45, 3102–3106.

    Google Scholar 

  15. Kiehl, J. T., Hack, J. J., Bonan, G. B. and Boville, B. A. et al.: 1998, ‘The National Center for Atmospheric Research Community Climate Model CCM3’, J. Climate 11, 1131–1149.

    Google Scholar 

  16. Kiehl, J. T., Hack, J. J., Brown, G. B., Boville, B. A. and Briegleb, P. et al.: 1996, Description of the NCAR Community Climate Model(CCM3)’, NCAR Technical Note, NCAR/TN-420 + STR, Boulder, Colorado.

  17. Li, X., Zhou, J. and Li, Z. et al.: 1998, ‘A numerical simulation of '5.5' super-dusts storm in northern China’, Advan. Atmos. Sci. 15, 63–73.

    Google Scholar 

  18. Liu, C. T. and Cheng, L.: 1997, ‘Paramerization of the formation and transportion for sand-dust of the black storm and mesoscale numerical experiments’, ACTA Meteor. Sinica 55, 726–739 (in Chinese).

    Google Scholar 

  19. Liu, Y. and Ren, L. X. et al.: 1998, ‘Numerical analysis of a dust storm and dust transportation’, Sci. Atmos. Sinica 22, 905–912 (in Chinese).

    Google Scholar 

  20. Mitsuta, Y., Takemi, T. T. and Hu, Y. Q. et al.: 1995, ‘Two severe local storms as observed in the arid area of North West China’, J. Meteor. Sci. Jap. 73, 1269–1284.

    Google Scholar 

  21. Pielke, R. A.: 1984, Mesoscale Meteorological Modeling, Academic Press, New York, 612 pp.

    Google Scholar 

  22. Qiu, J. H. and Sun, J. H.: 1994, ‘Optical remote sensing of dust storm and results analysis’ Sci. Atmos. Sinica 18, 1–10 (in Chinese).

    Google Scholar 

  23. Qiu, J. H and Zhao, Y. Z. et al.: 1984, ‘Detection of aerosol extinction coefficient profiles during dust storm by Lidar’, Sci. Atmos. Sinica 8, 205–210 (in Chinese).

    Google Scholar 

  24. Shen, S. H. and Chen, S. J.: 1993, ‘The numerical simulation of frontogenesis process forced by dust radiative heating’, ACTA Meteor. Sinica 1, 283–294 (in Chinese).

    Google Scholar 

  25. Slingo, J. M.: 1989, ‘A GCMParameterization for the shortwave radiative properties of water clouds’ J. Atmos. Sci. 46, 1419–1427.

    Google Scholar 

  26. Song, Z. X. and Cheng, L.: 1997, Diagnostic Analysis of the Perturbation Source on the '93.5' Black Storm, Journal of Lanzhou University (Natural Science), Vol. 33, pp. 116–122 (in Chinese).

    Google Scholar 

  27. Wang, W. and Cheng, L.: 1999, ‘The diagnosis of symmetric instability of the '93.5' black storm’, Plateau Meteor. 2, 127–137 (in Chinese).

    Google Scholar 

  28. Westphal, D. L., Toon, O. B. and Carlson, T. N.: 1987, ‘A two-dimension numerical investigation of the dynamics and microphysics of Saharan dust storms’, J. Geophys. Res. 92, 3027–3049.

    Google Scholar 

  29. You, L. G. and Ma, P. M. and Chen, J. H. et al.: 1991, ‘A case study of the aerosol characteristics in the lower troposphere during a dust storm event’, Quarter. J. Appl. Meteor. 2, 13–20 (in Chinese).

    Google Scholar 

  30. Zhang, X. Y., Arimoto, R. and Zhu, G. H. et al.: 1998, ‘Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions’, Tellus 50B, 317–330.

    Google Scholar 

  31. Zhang, X. L. and Cheng, L.: 1997, Diagnosis of Vorticity Source for the Genesis and Development of Mesoscale Vortex during ‘93.5’ Black Storm, Journal of Lanzhou University (Natural Science), Vol. 33, pp. 123–131 (in Chinese).

    Google Scholar 

  32. Zhu, W. Q.: 1982, ‘Analysis of observed size distribution of atmospheric aerosols’, Sci. Atmos. Sinica 6, 217–223 (in Chinese).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ling Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, XL., Cheng, L. & Chung, YS. Development of a Severe Sand-dust Storm Model and its Application to Northwest China. Water, Air, & Soil Pollution: Focus 3, 173–190 (2003). https://doi.org/10.1023/A:1023290408545

Download citation

  • mesoscale system
  • model improvement
  • radiativeeffect
  • sand-dust storm
  • simulation