Skip to main content
Log in

Mechanistic Studies on Nonviral Gene Delivery to the Intestine Using in Vitro Differentiated Cell Culture Models and an in Vivo Rat Intestinal Loop

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To identify factors influencing nonviral vector transfection in differentiated CaCo-2 and mucus-secreting coculture, CaCo-2:Ht29GlucH, cell culture models and to compare these in vitro results with in vivo transfection efficiency in rat intestine.

Methods. A range of nonviral vectors including DOTAP, Lipofectin, Superfect, PEI, and polylysine were investigated. CaCo-2 and a mucus-secreting coculture were used at 21 days. Transfection efficiency was assessed using pCMVluc (firefly luciferase) plasmid, and radiolabeled plasmid was used to determine the binding and internalization of plasmid DNA. The in vivo model used was a ligated rat intestinal loop.

Results. Transfection levels decreased by over 1000-fold in differentiated models relative to nondifferentiated COS-7 cells and were related to reductions in luciferase production by individual cells. Active internalization of DNA by the differentiated cells decreased. Removal of mucus by the mucolytic agent N-acetylcysteine, from the coculture system significantly reduced (p < 0.05) transfection efficiency. In vivo the transfection efficiency of PEI proved superior to DOTAP™.

Conclusions. Nonviral gene delivery to the hostile environment of the intestine is possible. Mechanistic studies using differentiated intestinal cell models aid identification of the rate-limiting steps to transfection and represent a more physiologically relevant approach to predict gene delivery to the intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Sandberg, C. Lau, M. Jacomino, M. Finegold, and S. J. Henning. Improving access to intestinal stem cells as a step toward intestinal gene transfer. Hum. Gene Ther. 5:323-329 (1994).

    Google Scholar 

  2. M. A. Croyle, M. Stone, G. L. Amidon, and B. L. Roessler. In vitro and in vivo assessment of adenovirus 41 as a vector for gene delivery to the intestine. Gene Ther. 5:645-654 (1998).

    Google Scholar 

  3. T. J. Sferra, D. McNeely, and P. R. Johnson. Gene transfer to the intestinal tract: a new approach using selective injection of the superior mesenteric artery. Hum. Gene Ther. 8:681-687 (1997).

    Google Scholar 

  4. D. A. Sweetser, S. M. Hauft, P. C. Hoppe, E. H. Birkenmeier, and J. I. Gordon. Transgenic mice containing intestinal fatty acid-binding protein-human growth hormone fusion genes exhibit correct regional and cell-specific expression of the reporter gene in their small intestine. Proc. Natl. Acad. Sci. USA 85:9611-9615 (1988).

    Google Scholar 

  5. S. N. Jones, M. Grompe, M. I. Munir, G. Veres, W. J. Craigen, and C. T. Caskey. Ectopic correction of ornithine transcarbamylase deficiency in sparse fur mice. J. Biol. Chem. 265:14684-14690 (1990).

    Google Scholar 

  6. H. Soriano-Brucher, C. Lau, T. Hourigan, M. Finegold, F. Ledley, and S. J. Henning. Gene transfer into the intestinal epithelium. Gastroenterology 100:A252(1991).

    Google Scholar 

  7. C. Lau, H. E. Soriano, F. D. Ledley, M. J. Finegold, J. H. Wolfe, E. H. Birkenmeier, and S. J. Henning. Retroviral gene transfer into the intestinal epithelium. Hum. Gene Ther. 6:1145-1151 (1995).

    Google Scholar 

  8. S. J. Henning. Gene transfer into the intestinal epithelium. Adv. Drug Deliv. Rev. 17:341-347 (1995).

    Google Scholar 

  9. F. C. MacLaughlin, R. J. Mumper, J. Wang, J. M. Tagliaferri, I. Gill, M. Hinchcliffe, and A. P. Rolland. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J. Control. Release 56:259-272 (1998).

    Google Scholar 

  10. A. N. Uduehi, S. H. Moss, J. Nuttall, and C. W. Pouton. Cationic lipid-mediated transfection of differentiated CaCo-2 cells: a filter culture model of gene delivery to a polarized epithelium. Pharm. Res. 16:1805-1811 (1999).

    Google Scholar 

  11. C. W. Pouton, P. Lucas, B. J. Thomas, A. N. Uduehi, D. A. Milroy, and S. H. Moss. Polycation–DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids. J. Control. Release 532:289-299 (1998).

    Google Scholar 

  12. C. Kitson, B. Angel, D. Judd, S. Rothery, N. J. Severs, A. Dewar, L. Huang, S. C. Wadsworth, S. H. Cheng, D. M. Geddes, and E. W. Alton. The extra-and intracellular barriers to lipid and adenovirus-mediated pulmonary gene transfer in native sheep airway epithelium. Gene Ther. 6(4):534-546 (1999).

    Google Scholar 

  13. C. M. Meaney and C. M. O'Driscoll. Mucus as a barrier to the permeability of hydrophilic and lipophilic compounds in the absence and presence of sodium taurocholate micellar systems using cell culture models. Eur. J. Pharm. Sci. 8:167-175 (1999).

    Google Scholar 

  14. J. Sambrook, E. F. Fritsch, and T. Maniatis. Molecular Cloning-A Laboratory Manual, Cold Spring Harbor Lab. Press, New York, 1989.

    Google Scholar 

  15. W. Zauner, S. Brunner, M. Buschle, M. Ogris, and E. Wagner. Differential behaviour of lipid based and polycation based gene transfer systems in transfecting primary human fibroblasts: a potential role of polylysine in nuclear transport. Biochim. Biophys. Acta 1428:57-67 (1999).

    Google Scholar 

  16. S. Brunner, T. Sauer, S. Carotta, M. Cotten, M. Saltik, and E. Wagner. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther. 7:401-407 (2000).

    Google Scholar 

  17. D. Voet and J. G. Voet. Biochemistry, John Wiley & Sons, New York, 1990.

    Google Scholar 

  18. H. Matsui, L. G. Johnson, S. H. Randell, and R. C. Boucher. Loss of binding and entry of liposomes-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells. J. Biol. Chem. 272:1117-1126 (1997).

    Google Scholar 

  19. A. Molist, M. Romarís, U. Lindahl, J. Villena, M. Touab, and A. Bassols. Changes in glycosaminoglycan structure and composition of the main heparan sulphate proteoglycan from human colon carcinoma cells (perlecan) during cell differentiation. Eur. J. Biochem. 254(2):371-377 (1998).

    Google Scholar 

  20. E. Walter, M. A. Croyle, B. J. Roessler, and G. L. Amidon. The absence of accessible vitronectin receptors in differentiated tissue hinders adenoviral-mediated gene transfer to the intestinal epithelium in vitro. Pharm. Res. 14:1216-1222 (1997).

    Google Scholar 

  21. R. K. Batra, H. Berschneider, and D. T. Curiel. Molecular conjugate vectors mediate efficient gene transfer into gastrointestinal epithelial cells. Cancer Gene Ther. 1:185-192 (1994).

    Google Scholar 

  22. M. Wilke, E. Fortunatt, M. Van de Breck, A. T. Hoogeveen, and B. J. Scholte. Efficacy of a peptide-based gene delivery system depends on mitotic activity. Gene Ther. 3:1133-1142 (1996).

    Google Scholar 

  23. S. Takeshita, D. Gai, G. Lecierc, J. G. Pickering, R. Riessen, L. Weir, and J. M. Isner. Increased gene expression after liposome-mediated arterial gene transfer associated with intimal smooth muscle cell proliferation. J. Clin. Invest. 93:652-661 (1994).

    Google Scholar 

  24. L. Vitiello, A. Chonn, J. D. Wasserman, C. Duff, and R. G. Worton. Condensation of plasmid DNA with polylysine improves liposome-mediated gene transfer into established and primary muscle cells. Gene Ther. 3:396-404 (1996).

    Google Scholar 

  25. A. Fasbender, J. Zabner, B. G. Zeiher, and M. J. Welsh. A low rate of cell proliferation and reduced DNA uptake limit cationic lipid-mediated gene transfer to primary cultures of ciliated human airway epithelia. Gene Ther. 4:1173-1180 (1997).

    Google Scholar 

  26. M. Stern, N. J. Caplen, J. E. Browning, U. Griesenbach, F. Sorgi, L. Huang, D. C. Gruenert, C. Marriot, R. G. Crystal, D. M. Geddes, and E. W. Alton. The effect of mucolytic agents on gene transfer across a CF sputum barrier in vitro. Gene Ther. 5:91-98 (1998).

    Google Scholar 

  27. A. Wikman, J. Karlsson, I. Carlstedt, and P. Artursson. A drug absorption model based on the mucus layer producing human intestinal goblet cell line Ht29-H. Pharm. Res. 10:843-852 (1993).

    Google Scholar 

  28. A. Bragonzi, G. Dina, A. Villa, G. Calori, A. Biffi, C. Bordignon, and B. M. Assael. Biodistribution and transgene expression with nonviral cationic vector/DNA complexes in the lungs. Gene Ther. 7:1753-1760 (2000).

    Google Scholar 

  29. C. A. Westbrook and R. B. Arenas. Gene therapy of the gut: introduction of the APC tumor-suppressor gene for cancer prevention or treatment. Adv. Drug Deliv. Rev. 17:349-355 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caitriona M. O'Driscoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cryan, SA., O'Driscoll, C.M. Mechanistic Studies on Nonviral Gene Delivery to the Intestine Using in Vitro Differentiated Cell Culture Models and an in Vivo Rat Intestinal Loop. Pharm Res 20, 569–575 (2003). https://doi.org/10.1023/A:1023286413666

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023286413666

Navigation