Skip to main content
Log in

Modelling of static recrystallisation by the combination of empirical models with the finite element method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

After rolling of aluminium alloys, static recrystallisation can modify product properties. The variation of properties throughout the stock thickness is of special interest to the producer. Predicting the recrystallisation kinetics by the combination of finite element method (FEM) with the various metallurgical models has attracted tremendous interest in both academia and industry. However, controversial results on the through-thickness distribution of the recrystallisation kinematics have been reported. The present paper attempts to explain this phenomenon from the viewpoint of the recrystallisation mechanism: the total stored energy, the growth rate of recrystallised grains, the Zener Hollomon parameter and the distribution of the equivalent strain. To improve the prediction accuracy, some new approaches are proposed on the calculation of equivalent strain and the Zener-Hollomon parameter. Some aspects related to the experimental establishment of these models are also critiqued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Nes, Progress in Materials Science 41 (1998) 129.

    Google Scholar 

  2. C. M. Sellars and Q. Zhu. Materials Science and Engineering A 280(1) (2000) 1.

    Google Scholar 

  3. M. Goerdeler and G. Gottstein, Materials Science & Engineering A 309/310 (2001) 377.

    Google Scholar 

  4. G. Gottstein, V. Marx and R. Sebald, J. Shanghai Jiaotong University E-5(1) (2000) 49.

    Google Scholar 

  5. G. Gottstein, V. Marx and R. Sebald, in “The Fourth Inter. Conf. On Recrystallisation and Related Phenomenoa” edited by T. Sakai and H. G. Suzuki (Japan, 1999) p. 15.

  6. H. R. Shercliff and A. M. Lovatt, Phil. Tran. R. Soc. Lond. A 357 (1999) 1621.

    Google Scholar 

  7. W. A. Johnson and R. F. Mehl, Trans. AIME 135 (1939) 416.

    Google Scholar 

  8. M. Avrami, J. Chem. Phys. 7 (1939) 1103.

    Google Scholar 

  9. A. N. Kolmogorov, USSR Ser. Metemat. 1 (1937) 355.

    Google Scholar 

  10. R. A. Vandermeer and D. Juul jensen, Metallurgical and Materials Transactions A 26A, 9 (1995) 2227.

    Google Scholar 

  11. B. K. Chen, P. F. Thomon and S. K. Choi, Materials Science and Technology 8 (1992) 72.

    Google Scholar 

  12. A. McLaren and C. M. Sellars, in “Strip Casting, Hot and Cold Working of Stainless Steels” edited by Ryan N. D. et al. (Met. Soc. CIM, Montreal, Canada, 1993) p. 107.

    Google Scholar 

  13. T. A. Dauda and A. J. McLaren, in “Modelling of Metal Rolling Processes 3,” edited by J. H. Beynon et al. (London, 1999) p. 257.

  14. H. L. Yiu et al., in “Hot Deformation of Aluminum Alloys,” edited by T. G. Langdon et al. (Detroit, 1999) p. 509.

  15. E. Nes and K. Marthinsen, Proc. in “Hot Deformation of Aluminium Alloys II,” edited by T. R. Bieler et al. (TMS, Chicago, 1998) p. 171.

    Google Scholar 

  16. H. E. Vatne, T. Furu, R. Ørsund and E. Nes, Acta Mater. 44(1) (1996) 4463.

    Google Scholar 

  17. H. E. Vatne, F. Perocheau, H. E. Ekstr m, L. Poizat, K. V. Nord, M. Knut, E. Lindh, J. Hagstr m and T. Furu, Mater. Sci. Forum 331-337 (2000) 551.

    Google Scholar 

  18. A. J. Brand, S. Kalz and R. Kopp, Comput. Mater. Sci. 7 (1996) 242.

    Google Scholar 

  19. M. S. Mirza, C. M. Sellars, K. Karhausen and P. Evans, Materials Science and Technology 17 (2001) 874.

    Google Scholar 

  20. M. A. Wells, D. J. Lloyd, I. V. Samarasekera, J. K. Brimacombe and E. B. Hawbolt, Metallurgical and Materials Transactions B 29B (1998) 709.

    Google Scholar 

  21. M. P. Black, R. L. Higginson and C. M. Sellars, Materials Science and Technology 17 (2001) 1055.

    Google Scholar 

  22. A. J. McLaren. PhD thesis, University of Sheffield, 1994.

  23. X. Duan and T. Sheppard, Journal of Materials Processing Technology 125/126 (2002) 181.

    Google Scholar 

  24. X. Duan and T. Sheppard, Computational Materials Science, in press.

  25. Y. Huang and F. J. Humphreys, Acta Mater. 48 (2000) 2017.

    Google Scholar 

  26. Y. Huang and F. J. Humphreys, Acta Mater 48 (1999) 2259.

    Google Scholar 

  27. D. J. Jensen, M. T. Lyttle and N. Hansen, in “Hot Deformation of Aluminium Alloys II,” edited by T. R. Bieler et al. (TMS, Chicago, 1998) p. 9.

    Google Scholar 

  28. M. A. Zaidi and T. Sheppard, Metal Sciences 16 (1982) 229.

    Google Scholar 

  29. N. Raghunathan and T. Sheppard, Materials Science and Technology 5 (1989) 542.

    Google Scholar 

  30. I. Gutierrez et al., Materials Science and Engineering A 102 (1988) 77.

    Google Scholar 

  31. G. Liserre et al., in “Sixth International Conference on Aluminium Alloys,” edited by T. Sao et al. (Toyohashi, Japan, July 1998) p. 395.

  32. T. Sheppard et al., in “Microstructural Control in Aluminium Alloys: Deformation, Recovery and Recrystallization,” New York, 27 Feb. 1985, edited by Chia, E. Henry and H. J. McQueen (The Metallurgical Society, Inc., New York, 1986) p. 19.

    Google Scholar 

  33. C. M. Sellars et al., in “Microstructural Control in Aluminium Alloys: Deformation, Recovery and Recrystallization.” New York, 27 Feb. 1985, edited by C. E. Henry and H. J. McQueen (The Metallurgical Society, Inc., New York, 1986) p. 179.

    Google Scholar 

  34. P. L. Orsetti Rossi and C. M. Sellars, Materials Science Forum.217-222 (1996) 379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheppard, T., Duan, X. Modelling of static recrystallisation by the combination of empirical models with the finite element method. Journal of Materials Science 38, 1747–1754 (2003). https://doi.org/10.1023/A:1023283911730

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023283911730

Keywords

Navigation