Skip to main content
Log in

The impact of substrate and lake trophy on the biomass and nutrient status of benthic algae

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Algal biomass, C:N:P (carbon:nitrogen:phosphorus) ratios and APA (biomass specific alkaline phosphatase activity) were measured in benthic algal communities on living substrates (mussels and macrophytes) and on rocks and stones (epilithon) in three lakes of different trophy. Benthic algal communities on living substrates had lower C:N:P ratios than epilithon, whereas algal biomass was highest on rocks and stones. Benthic algal biomass increased with the trophic level of a lake despite an increase of C:N:P ratios in the benthic community. The differences in C:N:P ratios and algal biomass between lakes of different trophy were higher on inert substrates than on macrophytes and mussels, probably because algae on living substrates could compensate a poor nutrient supply from lake water with substrate nutrients. However, the substrate was not, as expected, the most important nutrient supply in the oligotrophic lake, but in the eutrophic lake. Therefore, differences between inert and living substrates in a single lake were highest in the eutrophic lake. APA values of the oligotrophic lake were very high especially for benthic algae on stones, indicating an ability of the community to take up nutrients from organic sources. In conclusion, living substrates were an important nutrient source for benthic algae and the importance of this nutrient supply did not decrease with increasing lake trophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ács, E., S. Barreto, L. Ector & G. Lakatos, 1998. Colonization process of the epilithon in a shallow lake (Lake Balaton) at Tihany, Hungary, Abstract Book of the 15th International Diatom Symposium. Curtin University of Technology, Perth: 125.

    Google Scholar 

  • Ács, E. & K. Buczkó, 1994. Daily changes of reed periphyton composition in a Hungarian shallow lake (Lake Velence). In Marino, D. & M. Montresor (eds), Proceedings of the 13th International Diatom Symposium. Biopress Limited, Bristol: 1–10.

    Google Scholar 

  • Allen, H. L., 1971. Primary production, chemo-organotrophy, and nutritional interactions of epihytic algae and bacteria on macrophytes in the littoral of a lake. Ecol. Monogr. 41: 97–127.

    Google Scholar 

  • Anthoni, U., C. Christophersen, J. O. Madsen, S. Wium-Andersen & N. Jacobson, 1980. Biologically active sulphur compounds from the green alga Chara globularis. Phytochemistry 19: 1288–1229.

    Google Scholar 

  • Arnott, D. L. & M. J. A. Vanni, 1996. Nitrogen and phosphorus recycling by the zebra mussel (Dreissena polymorpha) in the western basin of Lake Erie. Can. J. Fish. aquat. Sci. 53: 646–659.

    Google Scholar 

  • Baumeister, S., 1997. The influence of wind on the littoral algal biocoenoses of Lake Erken, Sweden. D report, Institute of Physical Geography, University of Stockholm, 20 pp.

  • Björk Ramberg, S., 1984. Species composition and biomass of an epipelic algal community in a subarctic lake before and during lake fertilization. Holarctic Ecol. 7: 195–201.

    Google Scholar 

  • Blackburn, T. H. & K. Henriksen, 1983. Nitrogen cycling in different types of sediments from Danish waters. Limnol. Oceanogr. 28: 477–493.

    Google Scholar 

  • Borchardt, M. A., 1996. Nutrients. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 184–228.

    Google Scholar 

  • Buczkó, K. & E. Ács, 1992. Preliminary studies on the periphytic algae in the branch-system of the Danube at Cikolasziget (Hungary). Stud. Bot. Hung. 23: 49–62.

    Google Scholar 

  • Buczkó, K. & E. Ács, 1994. Algological studies on the periphyton in the branch-system of the Danube at Cikolasziget (Hungary). Verh. int. Ver. Limnol. 25: 1680–1683.

    Google Scholar 

  • Burkholder, J. M. & R. G. Wetzel, 1989. Microbial colonization on natural and artificial macrophytes in a phosphorus-limited, hardwater lakeJ. Phycol. 25: 55–65.

    Google Scholar 

  • Burkholder, J. M. & R. G. Wetzel, 1990. Epiphytic alkaline phosphatase on natural and artificial plants in an oligotrophic lake: re-evaluation of the role of macrophytes as a phosphorus source for epiphytes. Limnol. Oceanogr. 35: 736–747.

    Google Scholar 

  • Carignan, R. &J. Kalff, 1982. Phosphorus release by submerged macrophytes: Significance to epiphyton and phytoplankton. Limnol. Oceanogr. 27: 419–427.

    Google Scholar 

  • Cattaneo, A., 1987. Periphyton in lakes of different trophy. Can. J. Fish. aquat. Sci. 44: 296–303.

    Google Scholar 

  • Cattaneo, A. & J. Kalff, 1979. Primary production of algae growing on natural and artificial plants: A study of interactions between epiphytes and their substrate. Limnol. Oceanogr. 24: 1031–1037.

    Google Scholar 

  • Confer, J. L., 1971. Interrelations among plankton, attached algae, and the phosphorus cycle in artificial open systems. Ecol. Monogr. 42: 1–23.

    Google Scholar 

  • Eminson, D. & B. Moss, 1980. The composition and ecology of periphyton communities in freshwaters. I. The influence of host type and external environment on community composition. 5: 429–426.

    Google Scholar 

  • Goldman, J. C., J. J. McCarthy & D. G. Peavey, 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215.

    Google Scholar 

  • Hansson, L.-A., 1989. Structuring forces for periphytic and planctonic algal biomass development. Ph.D. thesis, Department of Ecology, University of Lund.

  • Hansson, L.-A., 1992. Factors regulating periphytic algal biomass. Limnol. Oceanogr. 37: 322–328.

    Google Scholar 

  • Hasselrot, A. T., 1993. Insight into a Psychomyiid life. Ph.D. thesis, Institute of Limnology, Uppsala University, 73 pp.

  • Healey, F. P. & L. L. Hendzel, 1980. Physiological indicators of nutrient deficiency in lake phytoplankton. Can. J. Fish. aquat. Sci. 37: 442–453.

    Google Scholar 

  • Hecky, R. E., P. Campbell & L. L. Hendzel, 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr. 38: 709–724.

    Google Scholar 

  • Hecky, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J. n. am. benthol. Soc. 14: 631–653.

    Google Scholar 

  • Herodek, S., L. Lackó & Á. Virág, 1988. Lake Balaton–research and management, ILFC110 pp.

  • Hershey, A. E., A. Hiltner, L., M. A. J. Hullar, M. Miller, C., J. R. Vestal, M. Lock, A., S. Rundle & B. J. Peterson, 1988. Nutrient influence on a stream grazer: Orthocladius microcommunities respond to nutrient input. Ecology 69: 1383–1392.

    Google Scholar 

  • Hillebrand, H. & M. Kahlert, 2001. Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnol. Oceanogr. 46: 1881–1898.

    Google Scholar 

  • Hillebrand, H. & U. Sommer, 1999. The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal. Limnol. Oceanogr. 44: 440–446.

    Google Scholar 

  • Howard-Williams, C. & B. R. Allanson, 1981. Phosphorus cycling in a dense Potamogeton pectinatus-L. bed. Oecologia 49: 56–66.

    Google Scholar 

  • Hyenstrand, P., E. Rydin & M. Gunnerhed, 2000. Response of pelagic cyanobacteria to iron additions–enclosure experiments in Lake Erken. J. Plankton Res. 22: 1113–1126.

    Google Scholar 

  • Istvánovics, V., K. Pettersson, D. Pierson & R. Bell, 1992. Evaluation of phosphorus deficieny indicators for summer phytoplankton in Lake Erken. Limnol. Oceanogr. 37: 890–900.

    Google Scholar 

  • James, W. F., J. W. Barko & H. L. Eakin, 1997. Nutrient regeneration by the zebra mussel (Dreissena polymorpha). J. Freshwat. Ecol. 12: 209–216.

    Google Scholar 

  • Jørgensen, E. G., 1957. Diatom periodicity and silicon assimilation. Dans. Bot. Ark. 18: 1–54.

    Google Scholar 

  • Kahlert, M., 1998. C:N:P ratios of freshwater benthic algae. Arch. Hydrobiol. (Suppl.) (Advanc. Limnol.) 51: 105–114.

    Google Scholar 

  • Kahlert, M. & M. Baunsgaard, 1999. Nutrient recycling–a strategy of a grazer community to overcome nutrient limitation. J. n. am. benthol. Soc. 18: 363–369.

    Google Scholar 

  • Kahlert, M., A. T. Hasselrot, H. Hillebrand & K. Pettersson, 2002. Spatial and temporal variation in the biomass and nutrient status of epilithic algae in Lake Erken, Sweden. Freshwat. Biol. 47: 1–24.

    Google Scholar 

  • Loeb, S. L., 1981. An in situ method for measuring the primary productivity and standing crop of the epilithic periphyton community in lentic systems. Limnol. Oceanogr. 26: 394–399.

    Google Scholar 

  • McComb, R. B., J. Bowers, George N. & S. Posen, 1979. Alkaline phosphatase, Plenum Press, New York: 986 pp.

    Google Scholar 

  • Menzel, D. H. & N. Corwin, 1965. The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulphate oxidation. Limnol. Oceanogr. 10: 280–282.

    Google Scholar 

  • Millie, D. F. & R. L. Lowe, 1983. Studies on Lake Erie's littoral algae; Host specifity and temporal periodicity of epiphytic diatoms. Hydrobiologia 99: 7–18.

    Google Scholar 

  • Moeller, R. E., J. M. Burkholder & R. G. Wetzel, 1988. Significance of sedimentary phosphorus to a rooted submersed macrophyte (Najas flexilis (Willd.) Rostk. and Schmidt) and its algal epiphytes. Aquat. Bot. 32: 261–281.

    Google Scholar 

  • Pettersson, K., 1980. Alkaline phosphatase activity and algal surplus phosphorus as phosphorus-deficiency indicators in Lake Erken. Arch. Hydrobiol. 89: 54-87.

    Google Scholar 

  • Pieczynska, E. & I. Spodniewska, 1963. Occurrence and colonization of periphyton organisms in accordance with the type of substrate. Ekol. pol. A XI: 533–545.

  • Pringle, C. M., 1985. Effects of Chironomid (Insecta: Diptera) tubebuilding activities on stream diatom communities. J. Phycol. 21: 185–194.

    Google Scholar 

  • Prins, T. C. & A. C. Smaal, 1994. The role of the blue mussel Mytilus edulis in the cycling of nutrients in the Oosterschelde Estuary (The Netherlands). Hydrobiologia 282–283: 413–429.

    Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton, Cambridge University Press, Cambridge, 384 pp.

    Google Scholar 

  • Riber, H. H., J. P. Sorensen & A. Kowalczewski, 1983. Exchange of phosphorus between water, macrophytes and epiphytic periphyton in the littoral of Mikolajskie Lake, Poland. In Wetzel, R. G. (ed.), Periphyton of Freshwater Ecosystems. Dr W. Junk Publishers, The Hague: 326–243.

    Google Scholar 

  • Riber, H. H. & R. G. Wetzel, 1987. Boundary-layer and internal diffusion effects on phosphorus fluxes in lake periphyton. Limnol. Oceanogr. 32: 1181–1194.

    Google Scholar 

  • Smith, V. H., 1979. Nutrient dependence of primary productivity in lakes. Limnol. Oceanogr. 24: 1051.

    Google Scholar 

  • Stevenson, R. J., M. L. Bothwell & R. L. Lowe. (1996). Algal ecology: freshwater benthic ecosystems. In Thorp, J. H. (ed.), Aquatic Ecology, Academic Press, San Diego: 753.

    Google Scholar 

  • Sundbäck, K., V. Enoksson, W. Granéli & K. Pettersson, 1991. In-fluence of sublittoral microphytobenthos on the oxygen and nutrient flux between sediment and water: a laboratory continuous-flow study. Mar. Ecol. Prog. Ser. 74: 263–279.

    Google Scholar 

  • Sundbäck, K. & W. Granéli, 1988. Influence of microphytobenthos on the nutrient flux between sediment and water: a laboratory study. Mar. Ecol. Prog. Ser. 43: 63–69.

    Google Scholar 

  • Vadeboncoeur, Y., D. Lodge, M. & S. Carpenter, R., 2001. Wholelake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology 82: 1065–1077.

    Google Scholar 

  • Vadeboncoeur, Y. M., 1998. Whole-lake fertilization effects on the abundance, distribution, and production of benthic and pelagic algae in north temperate lakes. Diss. Abst. Int. Pt. B-Sci. & Eng. 59.

  • Vollenweider, R. & J. Kerekes. (1982). Eutrophication of waters, monitoring, assessment and control. OECD, Paris.

  • Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39: 1985–1992.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology, Saunders College Publishing, Philadelphia: 767 pp.

    Google Scholar 

  • Wetzel, R. G., 1996. Benthic algae and nutrient cycling in lentic freshwater ecosystems. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 641–669.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses, Springer-Verlag, New York: 391 pp.

    Google Scholar 

  • Weyhenmeyer, G., 1999. Lake Erken. Scripta Limnologica Upsaliensis B:16: 1–51.

    Google Scholar 

  • Wiltshire, K. H., 1993. The effects of the photosynthetic production of microphytobenthos on the nutrient and oxygen status of sediment–water systems. Verh. int. Ver. theor. angew. Limnol. 25: 1141–1146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahlert, M., Pettersson, K. The impact of substrate and lake trophy on the biomass and nutrient status of benthic algae. Hydrobiologia 489, 161–169 (2002). https://doi.org/10.1023/A:1023280720576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023280720576

Navigation