Skip to main content
Log in

Ecological investigations on the northern distribution range of Hippocrepis comosa L. in Germany

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The objective of this study was to identify the causes of the limits of the geographical range of Hippocrepis comosa. Along a gradient from the northwestern distribution boundary towards the distribution centre in Germany, 46 field plots were established where growth and microclimate were monitored simultaneously. In total, 11 vegetative and generative traits and 7 microclimatic parameters were recorded over 7 time intervals during the vegetation period, together with 14 general site parameters. Regression analyses were performed between all traits and environmental parameters in a certain interval. At the beginning of the growing season the best positive correlation coefficients for vegetative growth were observed with soil temperature. From the end of May to the middle of June, vegetative growth rates decreased and showed the best positive correlation with soil water content. Despite credible relationships between vegetative growth and microclimate, their contribution toward explaining the northern distribution boundary was found to be limited, because no correlation with the distance from the distribution boundary was observed. The only growth parameter that showed both a positive correlation with distance from the distribution boundary and a significant correlation with microclimate was the percentage of seed setting, which increased towards the distribution centre and was correlated with air temperature. Further field observations on plots outside the actual range of Hippocrepis comosa revealed no microclimatic reasons as to why the species was absent from these sites. This shows that the environmental parameters are in no way deterministic for the range limit. The frost hardiness of Hippocrepis comosa was studied in additional laboratory experiments in which significant damage was not found above −18 °C for adult plants and above −14 °C for seedlings, which is remarkably low and too low to be relevant for the northwestern distribution boundary. Another field experiment revealed that seedling establishment exhibited a positive relationship to soil water content, which became more favourable towards the range boundary. It is concluded that temperature, particularly air temperature, makes the largest contribution to explaining the northern distribution boundary of Hippocrepis comosa in Germany and that mainly generative reproduction is affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almqvist C., Bergsten U., Bondesson L. and Eriksson U. 1998. Predicting germination capacity of Pinus sylvestris and Picea abies seeds using temperature data from weather stations. Can. J. For. Res. 28: 1530–1535.

    Article  Google Scholar 

  • Barkman J.J. 1977. Die Erforschung des Mikroklimas in der Vegetation: Theoretische und methodische Aspekte. In: Dierschke H. (ed.), Vegetation und Klima. Ber. Int. Symp. Int. Vereinig. Vegetationsk. Rinteln. Vaduz, Cramer, pp. 5–20.

  • Baskin J.M. and Baskin C.C. 1989. Physiology of dormancy and germination in relation to seed bank ecology. In: Leck M.A., Parker V.T. and Simpson R.L. (eds), Ecology of Seed Banks. Academic Press, London, pp. 53–66.

    Google Scholar 

  • Bonn S. and Poschlod P. 1998. Ausbreitungsbiologie der Pflanzen Mitteleuropas: Grundlagen und kulturhistorische Aspekte. Quelle und Meyer, Wiesbaden.

  • Borchert R. 1983. Phenology and control of flowering in tropical trees. Biotropica 15: 81–89.

    Article  Google Scholar 

  • Bortz J., Lienert G.A. and Boehnke K. 1990. Verteilungsfreie Methoden in der Biostatistik. Springer, Berlin.

    Google Scholar 

  • Box E.O., Crumpacker D.W. and Hardin D. 1993. A climatic model for location of plant species in Florida, USA. J. Biogeogr. 20: 629–644.

    Article  Google Scholar 

  • Bruelheide H. 1999. Experiments as a tool to investigate plant range boundaries. Verh. Ges. Ökol. 29: 19–26.

    Google Scholar 

  • Bruelheide H. and Scheidel U. 1999. Slug herbivory as a limiting factor for the geographic range of Arnica montana. J. Ecol. 87: 839–848.

    Article  Google Scholar 

  • Callauch R. 1986. Die Frosthärte der Stechpalme (Ilex aquifolium). Verh. Ges. Ökol. 14: 523–527.

    Google Scholar 

  • Deutscher Wetterdienst 1964. Klimaatlas von Niedersachsen.

  • Deutscher Wetterdienst 1997. Monatlicher Witterungsbericht, 45 (1–12).

    Google Scholar 

  • Diekmann M. 1996. Relationship between flowering phenology of perennial herbs and meteorological data in deciduous forests in Sweden. Can. J. Bot. 74: 528–537.

    Article  Google Scholar 

  • Ellenberg H. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. 2nd ed. Scripta Geobotanica 18: 1–258.

    Google Scholar 

  • Fearn G.M. 1972. The distribution of intraspecific chromosome races of Hippocrepis comosa L. and their phytogeographical significance. New Phytol. 71: 1221–1225.

    Article  Google Scholar 

  • Fearn G.M. 1973. Biological Flora of the British Isles. Hippocrepis comosa L. J. Ecol. 61: 915–926.

    Article  Google Scholar 

  • Fischer S.F., Poschlod P. and Beinlich B. 1995. Die Bedeutung der Wanderschäferei für den Artenaustausch zwischen isolierten Schaftriften. Beih. Veröff. Naturschutz Landschaftspfl. Bad.-Württ. 83: 229–256.

    Google Scholar 

  • Fischer S.F., Poschlod P. and Beinlich B. 1996. Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J. Appl. Ecol. 33: 1206–1222.

    Article  Google Scholar 

  • Gardener C.J., Mc Ivor J.G. and Jansen A. 1993. Passage of legume and grass seeds through the digestive tract of cattle and their survival in faeces. J. Appl. Ecol. 30: 63–74.

    Article  Google Scholar 

  • Garve E. 1993. Rote Liste der gefährdeten Farn-und Blütenpflanzen in Niedersachsen und Bremen, 4th ed. Informationsd. Natursch. Niedersachs. 13: 1–37.

    Google Scholar 

  • Garve E. 1994. Atlas der gefährdeten Farn-und Blütenpflanzen in Niedersachsen und Bremen. Kartierung 1982-1992. Naturschutz Landschaftspfl. Nieders. 30: 1–478.

    Google Scholar 

  • Geiger R. 1965. The Climate Near the Ground. Harvard University Press, Cambridge.

    Google Scholar 

  • Good R. 1964. The Geography of the Flowering Plants. 3rd edn. Longmans, London.

    Google Scholar 

  • Grace J. 1987. Climatic tolerance and the distribution of plants. New Phytol. 106: 113–130.

    Article  Google Scholar 

  • Graves J.D. and Taylor K. 1986. A comparative study of Geum rivale L. and G. urbanum L. to determine those factors controlling their altitudinal distribution. I. Growth in controlled and natural environments. New Phytol. 104: 681–691.

    Article  Google Scholar 

  • Greene D.F. and Johnson E.A. 1989. A model of wind dispersal of winged or plumed seeds. Ecology 70: 339–347.

    Article  Google Scholar 

  • Harper J.L. 1977. Population Biology of Plants. Academic Press, London.

    Google Scholar 

  • Hegi G. 1924. Illustrierte Flora von Mittel-Europa. Part 3. 1st edn. Vol. 4. Parey, Berlin.

  • Hintikka V. 1963. Über das Grossklima einiger Pflanzenareale in zwei Klimakoordinatensystemen dargestellt. Ann. Bot. Fenn. 34: 1–64.

    Google Scholar 

  • Holten J.I. 1993. Potential effects of climatic change on distribution of plant species, with emphasis on Norway. In: Holten J.I., Paulsen G. and Oechel W.C. (eds), Impacts of Climatic Change on Natural Ecosystems, with Emphasis on Boreal and Arctic/ Alpine Areas. Norwegian Institute for Nature Research (NINA), Trondheim, pp. 84–104.

  • Huntley B., Bartlein P.J. and Prentice I.C. 1989. Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America. J. Biogeogr. 16: 551–560.

    Article  Google Scholar 

  • Huntley B., Berry P.M., Cramer W. and McDonald A.P. 1995. Modelling present and potential future ranges of some European higher plants using climate response surfaces. J. Biogeogr. 22: 967–1001.

    Article  Google Scholar 

  • Hunt R. 1989. Basic Growth Analysis. Unwin Hyman, London.

    Google Scholar 

  • Iversen J. 1944. Viscum, Hedera and Ilex as climate indicators. Geol. Fören. Förhandl. 66: 463–483.

    Google Scholar 

  • Iverson L.R. and Prasad A.M. 1998. Predicting abundance of 80 tree species following climate change in the eastern United States. Ecol. Monogr. 68: 465–485.

    Article  Google Scholar 

  • Jäger E.J. 1972. Comments on the history and ecology of continental European plants. In: Valentin D.H. (ed.), Taxonomy, Phytogeography and Evolution. Academic Press, London, pp. 349–362.

    Google Scholar 

  • Jäger E.J. 1990. Pflanzenarealgrenzen als Leistungsgrenzen. Biol.Rundsch. 28: 295–306.

    Google Scholar 

  • Jäger E.J. 1995. Klimabedingte Arealveränderungen von anthropochoren Pflanzen und Elementen.der natürlichen Vegetation. Angew.Landschaftsökol. (Bonn-Bad Godesberg) 4: 51–57.

    Google Scholar 

  • Jalas J. and Suominen J. (eds) 1972–1991. Atlas Florae Europaeae. Societas Biologica Fennica Vanamo, Helsinki.

    Google Scholar 

  • Jones H.G. 1983. Plants and Microclimate. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Kappen L. 1964. Untersuchungen über den Jahreslauf der Frost-, Hitze-und Austrocknungsresistenz von Sporophyten einheimischer Polypodiaceae (Filicinae). Flora 155: 123–166.

    Google Scholar 

  • Kirchner O., Loew E., Schröter C. and Wangerin W. 1938. Lebensgeschichte der Blütenpflanzen Mitteleuropas. Vol. III. Ulmer, Stuttgart.

  • Koch G.W., Vitousek P.M., Steffen W.L. and Walker B.H. 1995.Terrestrial transects for global change research. Vegetatio 121: 53–65.

    Article  Google Scholar 

  • Lang A. 1965. Physiology of flower initiation. In: Ruhland W. (ed.), Encyclopedia of Plant Physiology. Springer, Berlin, pp. 1380–1536.

  • Larcher W. and Bauer H. 1981. Ecological significance of resistance to low temperature. In: Lange O.L., Nobel P.S., Osmond C.B. and Ziegler H. (eds), Physiological Plant Ecology. I. Encyclopedia of Plant Physiology 12 A. Springer, Berlin, Heidelberg, pp. 403–437.

  • Larcher W. 1994. Ökophysiologie der Pflanzen. Leben, Leistung und Streßbewältigung der Pflanzen in ihrer Umwelt. 5th edn.Ulmer, Stuttgart.

  • Meusel H. and Buder J. 1955. DeVerbreitungskarten mitteldeutscher Leitpflanzen. 8. Reihe. Wiss. Z. Martin-Luther-Univ. Halle 5: 297–334.

    Google Scholar 

  • Meusel H., Jäger E. and Weinert E. 1964. Vergleichende Chorologie der zentraleuropäischen Flora. Vol. 1. Karten. Gustav Fischer, Jena.

  • Müller-Westermeier G. 1995. DeNumerische Verfahren zu Erstellung klimatologischer Karten. Ber. Dt. Wetterdienst 193: 1–18.

    Google Scholar 

  • Müller-Stoll R. 1936. DeÖkologische Untersuchungen an Xerothermpflanzen des Kraichgaus. Z. Bot. 29: 161–253.

    Google Scholar 

  • Murray M.B., Cape J.N. and Fowler D. 1989. Quantification of frost damage in plant tissues by rates of electrolyte leakage. New Phytol. 113: 307–311.

    Article  Google Scholar 

  • Newman E.I. 1965. Factors controlling the germination date of winter annuals. J. Ecol. 51: 625–638.

    Google Scholar 

  • Oberdorfer E. 1978. Süddeutsche Planzengesellschaften. Teil II. Gustav Fischer, Stuttgart.

  • Pigott C.D. and Huntley J.P. 1978. Factors controlling the distribution of Tilia cordata at the northern limits of its geographical range. I. Distribution in north-west England. New Phytol. 81: 429–441.

    Article  Google Scholar 

  • Pigott C.D. and Huntley J.P. 1980. Factors controlling the distribution of Tilia cordata at the northern limits of its geographical range. II. History in north-west England. New Phytol. 84: 145–164.

    Article  Google Scholar 

  • Pigott C.D. and Huntley J.P. 1981. Factors controlling the distribution of Tilia cordata at the northern limits of its geographical range. III. Nature and causes of seed sterility. New Phytol. 87: 817–839.

    Article  Google Scholar 

  • Poschlod P. and Jackel A.K. 1993. Untersuchungen zur Dynamik von generativen Diasporenbanken von Samenpflanzen in Kalkmagerrasen. Flora 188: 49–71.

    Google Scholar 

  • Poschlod P., Kiefer S., Tränkle U., Fischer S. and Bonn S. 1998.Plant species richness in calcareous grasslands as affected by dispersability in space and time. Appl. Veg. Sc. 1: 75–90.

    Article  Google Scholar 

  • Poschlod P., Matthies D., Jordan S. and Mengel C. 1996. The biological flora of Central European ecological bibliography. Bull. Geobot. Inst. ETH 62: 89–108.

    Google Scholar 

  • Quinlivan B.J. 1961. The effect of constant and fluctuating temperatures on the permeability of the hard seeds of some legume species. Aust. J. Agric. Res. 12: 1009–1022.

    Article  Google Scholar 

  • Rathke B. and Lacey E.P. 1985. Phenological patterns of terrestrial plants. Ann. Rev. Ecol. Syst. 16: 179–214.

    Article  Google Scholar 

  • Saetersdal M. and Birks H.J.B. 1997. A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change. J. Biogeogr. 24: 127–152.

    Article  Google Scholar 

  • SAS Institute 1987. SAS/STAT Guide for Personal Computers. Ver. 6., Cary, NC.

  • SAS Institute 1989. SAS Procedures Guide, Release 6.03., Cary, NC.

  • Sauer R.H. 1976. The relationship of cumulative sums and moving averages of temperatures to reproductive phenology in Clarka. Am. Midl. Nat. 95: 144–158.

    Article  Google Scholar 

  • Scheidel U. and Bruelheide H. 1999. Selective slug grazing on montane meadow plants. J. Ecol. 87: 828–838.

    Article  Google Scholar 

  • Schulz C. and Bruelheide H. 1999. An experimental study on the impact of winter temperature on the distribution of Euphorbia amygdaloides L. in Central Germany. In: Klötzli F. and Walther G.R. (eds), Recent Shifts in Vegetation Boundaries of Deciduous Forests, Especially Due to General Global Warming. Birkhäuser, Basel, pp. 121–150.

  • Sirois L., Bégin Y. and Parent J. 1999. Female gametophyte and embryo development of black spruce along a shore-hinterland climatic gradient of a recently created reservoir, northern Quebec. Can. J. Bot. 77: 61–69.

    Article  Google Scholar 

  • Söyrinki N. 1954. Vermehrungsökologische Studien in der Planzenwelt der Bayerischen Alpen. Ann. Bot. Soc. Zool. Bot. Fennicae Vanamo 27: 1–232.

    Google Scholar 

  • Steffen W.L. and Shvidenko A.Z. 1996. IGBP northern Eurasia study: prospectus for an integrated global change research project. IGBP Global Change Rep. 37: 1–95.

    Google Scholar 

  • Stender S., Poschlod P., Vauk-Hentzelt E. and Dernedde T. 1997. Die Ausbreitung von Pflanzen durch Galloway-Rinder. Verh. Ges. Ökol. 27: 173–180.

    Google Scholar 

  • Steponkus P.L. and Lanphear F.O. 1967. Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol. 42: 1423–1426.

    Article  PubMed  CAS  Google Scholar 

  • Steubing L. and Fangmeier A. 1992. Pflanzenökologisches Praktikum. Ulmer, Gießen.

  • Stoutjesdijk P. and Barkman J.J. 1992. Microclimate, Vegetation and Fauna. Opulus Press, Knivsta.

    Google Scholar 

  • Sykes M.T. and Prentice I.C. 1995. Boreal forest futures: modelling the controls on tree species range limits and transient responses to climate change. Water Air Soil Pollution 82: 415–428.

    Article  CAS  Google Scholar 

  • Tan K.H. 1996. Soil Sampling, Preparation and Analysis. Marcel Decker, Georgia, USA.

    Google Scholar 

  • Thompson K., Bakker J.P. and Bekker R.M. 1997. The Soil Seed Banks of North West Europe: Methodology, Density and Longevity. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Till O. 1956. Über die Frosthärte von Pflanzen sommergrüner Laubwälder. Flora 143: 499–542.

    Google Scholar 

  • Uemura S. 1989. Snowcover as a factor controlling the distribution and speciation of forest plants. Vegetatio 82: 127–137.

    Article  Google Scholar 

  • Urbanska K.M. 1997. Safe sites-interface of plant population ecology and restoration ecology. In: Urbanska K.M., Webb N.R. and Edwards P.J. (eds), Restoration Ecology and Sustainable Development. Cambridge University Press, Cambridge, pp. 81–110.

    Google Scholar 

  • Volk O.H. 1937. Untersuchungen über das Verhalten der osmotischenWerte von Pflanzen aus steppenartigen Gesellschaften und lichten Wäldern des mainfränkischen Trockegebietes. Z. Bot. 32: 65–149.

    Google Scholar 

  • Wagner S. 1995. Übertragung strahlungsrelevanter Wetterinformation aus punktuellen PAR-Sensordaten in größere Versuchs-flächenanlagen mit Hilfe hemisphärischer Fotos. Allg. Forstund Jagd-Zeitung 167: 34–40.

    Google Scholar 

  • Walter H. and Straka H. 1970. Arealkunde (Floristisch-historische Geobotanik). 2nd edn. Ulmer, Stuttgart.

  • Wielgolaksi F.-E. 1999. Starting dates and basic temperatures in phenological observations of plants. Int. J. Biometeorol. 42: 158–168.

    Article  Google Scholar 

  • Woodward F.I. 1987. Climate and Plant Distribution. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Woodward F.I. 1992. Tansley Review No. 41. Predicting plant responses to global environmental change. New Phytol. 122: 239–251.

    Article  CAS  Google Scholar 

  • Woodward F.I. 1997. Life at the edge: a 14-year study of a Verbena offıcinalis population's interaction with climate. J. Ecol. 85: 899–906.

    Article  Google Scholar 

  • Woodward F.I. and Pigott C.D. 1975. The climatic control of the altitudinal distribution of Sedum rosea (L.) Scop. and S. telephium L. I. Field observations. New Phytol. 74: 323–334.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Bruelheide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennenberg, K.J., Bruelheide, H. Ecological investigations on the northern distribution range of Hippocrepis comosa L. in Germany. Plant Ecology 166, 167–188 (2003). https://doi.org/10.1023/A:1023280109225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023280109225

Navigation