Skip to main content
Log in

Synthesis and characterization of rod-like Y2O3 and Y2O3:Eu3+

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Y2O3 rods 100 to 200 nm in diameter and 10 to 20 μm in length are accessible via polyol-mediated synthesis of a precursor material with similar shape. By heating of Y(CH3COO)3 · xH2O and a defined amount of water at 190°C in diethylene glycol, the rod-like precursor material is formed. Infrared spectroscopy (IR), differential thermal analysis (DTA) and thermal gravimetry (TG) evidence that this precursor material still contains acetate. However, the precursor material can be transformed to Y2O3 by sintering at 600°C without destruction of the rod-like shape. According to X-ray powder diffraction analysis, the rods are well crystallized. They can be assumed to be with [100] orientation. By doping with Eu3+ (5 mol%), red emitting phosphor rods can be realized. With optical spectroscopy the typical line emission of Eu3+ is observed. Diffuse reflectance of Y2O3:Eu3+ rods is determined to be higher than 95% in the visible. While exciting at 254 nm (Hg-discharge), a quantum efficiency of 38.5% is proven for the prepared Y2O3:Eu3+ rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. R. Rao, B. C. Satishkumar, A. Govindaraj and M. Nath, Chem. Phys. Chem. 2 (2001) 78.

    Google Scholar 

  2. W. Tremel, Angew. Chem. Int. Ed. 38 (1999) 2315.

    Google Scholar 

  3. Y. Liu, C. Zheng, W. Wang, C. Yin and G. Wang, Adv. Mater. 13 (2001) 1883.

    Google Scholar 

  4. D. W. Wang, A. J. Millis and S. D. Sarma, Phys. Rev. Lett. 85 (2000) 4570.

    Google Scholar 

  5. M. Q. He, I. Minus, P. Z. Zhou and N. Mohammed, Appl. Phys. Lett. 77 (2000) 3731.

    Google Scholar 

  6. P. M. Ajayan and T. W. Ebbesen, Rep. Prog. Phys. 60 (1997) 1025.

    Google Scholar 

  7. J. T. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res. 32 (1999) 435.

    Google Scholar 

  8. F. Krumeich, H. J. Muhr, M. Niederberger, F. Bieri, B. Schnyder and R. Nesper, J. Amer. Chem. Soc. 121 (1999) 8324.

    Google Scholar 

  9. S. A. Sapp, B. B. Lakshmi and C. R. Martin, Adv. Mater. 11 (1999) 402.

    Google Scholar 

  10. J. H. Fendler, “Nanostructures and Nanostructured Films” (Wiley-VCH, Weinheim, 1998).

    Google Scholar 

  11. D. M. Antonelli and J. Y. Ying, Angew. Chem. Int. Ed. 35 (1996) 426.

    Google Scholar 

  12. G. Buxbaum, “Industrial Inorganic Pigments” (VCH, Weinheim, 1993).

    Google Scholar 

  13. P. Toneguzzo, G. Viau, O. Acher, F. Guillet, E. Bruneton, F. Fievet-vincent and F. Fievet, J. Mater. Sci. 35 (2000) 3767.

    Google Scholar 

  14. C. Feldmann and H.-O. Jungk, Angew. Chem. Int. Ed. 40 (2001) 359.

    Google Scholar 

  15. C. Feldmann and C. Metzmacher, J. Mater. Chem. 11 (2001) 2603.

    Google Scholar 

  16. International Centre for Diffraction Data, Pennsylvania, Release 2001.

  17. H. GÜnzler and H. BÖck, “IR-Spectroscopy” (VCH, Weinheim, 1983).

    Google Scholar 

  18. C. Feldmann, unpublished results.

  19. G. Blasse and B. C. Grabmaier, “Luminescent Materials” (Springer, Berlin, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Feldmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldmann, C., Merikhi, J. Synthesis and characterization of rod-like Y2O3 and Y2O3:Eu3+ . Journal of Materials Science 38, 1731–1735 (2003). https://doi.org/10.1023/A:1023279710821

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023279710821

Keywords

Navigation