Skip to main content
Log in

Relaxation Equations in Operator Representation for a Multipolar Spin System (1/2, 5/2)

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

The theoretical description of relaxation processes in a scalar-coupled two-spin system containing a quadrupole nucleus (I = 1/2, S = 5/2) is presented, presuming that the relaxation is determined by dipole interaction between I and S spins, quadrupole interactions of the nucleus S, and the anisotropy of the chemical shift of both nuclei CSA (I) and CSA (S). The interference terms (cross correlation terms) between these types of interactions D-Q, D-CSA, and Q-CSA are also taken into account. Within the framework of the theory of a density matrix in the second order of perturbation theory, the relaxation equations in the operator representation for describing the longitudinal and transverse relaxation of a nucleus with spin 1/2 are derived. A formalism for the angular momentum operators of scalar coupled spins IS is developed, which makes it possible to calculate a spectrum pattern of a nucleus with a half spin, scalar coupled to a quadrupole nucleus with any spin. The proposed procedure has allowed us to find linear combinations of operators which can be considered as the projective operators responsible for each spectral component of spin 1/2, scalar coupled to a quadrupole nucleus (S = 5/2). The relaxation equations allowing investigation of the longitudinal and transverse relaxation of each component of the spectrum of a half-spin nucleus are obtained. The rates of longitudinal and transverse relaxation and also the rate of cross relaxation between the components are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Cavanagh, W. J. Fairbrother, A. G. Palmer III, and N. J. Skelton, Protein NMR Spectroscopy, Academic Press, San Diego, California, (1996).

    Google Scholar 

  2. J. N. S. Evans, Biomolecular NMR Spectroscopy, Oxford University Press, Oxford (1995).

    Google Scholar 

  3. A. Kaikkonen and J. Kowalewski, J. Magn. Reson., 146, 297–310 (2000).

    Google Scholar 

  4. M.-D. Tsai and K. Bruzik, in: L. J. Berliner (ed.), Biological Magnetic Resonance, Vol. 5, Reusen (1983), p. 129.

  5. M. J. S. Kelly, C. Krieger, L. J. Ball, Y. Yu, G. Richter, P. Schmieder, A. Bacher, and H. Oschkinat, J. Biomol. NMR, 14(1), 79–83 (1999).

    Google Scholar 

  6. L. G. Werbelow and R. E. London, J. Chem. Phys., 102, 5181–5189 (1995).

    Google Scholar 

  7. A. Grzesiek and A. Bax, J. Am. Chem. Soc., 116, 10196–10201 (1994).

    Google Scholar 

  8. R. E. London, D. M. LeMaster, and L. G. Werbelow, J. Am. Chem. Soc., 116, 8400–8401 (1994).

    Google Scholar 

  9. I. P. Gerothanassis and N. Sheppard, J. Magn. Reson., 46, 423–429 (1982).

    Google Scholar 

  10. G. A. Gray and T. A. Albright, J. Am. Chem. Soc., 99, 3243–3248 (1977).

    Google Scholar 

  11. L. G. Werbelow, D. A. Ikenberry, and G. Pouzard, J. Magn. Reson., 51, 409–413 (1983).

    Google Scholar 

  12. L. G. Werbelow and G. Pouzard, J. Phys. Chem., 85, 3887–3891 (1981).

    Google Scholar 

  13. J. S. Blicharski, Acta Phys. Polon., 36, 211–218 (1969).

    Google Scholar 

  14. G. S. Kupriyanova, Appl. Magn. Res., 19, 161–178 (2000).

    Google Scholar 

  15. A. G. Redfield, Adv. Magn, Res., 1, (1965).

  16. G. K. Fraenkel, J. Chem. Phys., 42, 4275–4298 (1965).

    Google Scholar 

  17. L. G. Werbelow, G. A. Morris, P. Kumar, and J. Kowalewski, J. Magn. Reson., 140, 1–8 (1999).

    Google Scholar 

  18. A. Abragam, Principles of Nuclear Magnetism, Clarendon Press, Oxford (1991).

    Google Scholar 

  19. M. Goldman, J. Magn. Reson., 60, 437–452 (1984).

    Google Scholar 

  20. M. Goldman, J. Magn. Reson., 149, 160–187 (2001).

    Google Scholar 

  21. B. D. Nageswara Rao, Adv. Magn. Reson., 4, 271–296 (1970).

    Google Scholar 

  22. G. S. Kupriyanova, Zh. Prikl. Spektrosk., 68, 239–242 (2001).

    Google Scholar 

  23. K. Blum, Density Matrix Theory and Applications [Russian translation], Moscow (1983).

  24. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions [Russian translation], Moscow (1990).

  25. N. Chandrakumar, in: NMR Basic Principles and Progress, Vol. 34, Springer-Verlag, Berlin–Heidelberg (1996), pp. 1–115.

    Google Scholar 

  26. L. C. Biedenharn and J. D. Louck, in: Angular Momentum in Quantum Physics [Russian translation], Moscow (1984), p. 47.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupriyanova, G.S. Relaxation Equations in Operator Representation for a Multipolar Spin System (1/2, 5/2). Journal of Applied Spectroscopy 70, 86–94 (2003). https://doi.org/10.1023/A:1023276526156

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023276526156

Navigation