Skip to main content
Log in

Thiele Rational Interpolation for the Numerical Computation of the Reversible Randles–Sevcik Function in Electrochemistry

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper uses Thiele rational interpolation to derive a simple method for computing the Randles–Sevcik function π1/2χ(x), with relative error at most 1.9 × 10−5 for −∞ < x < ∞. We develop a piecewise approximation method for the numerical computation of π1/2χ(x) on the union (−∞, −10) ∪ [−10, 10] ∪ (10, ∞). This approximation is particularly convenient to employ in electrochemical applications where four significant digits of accuracy are usually sufficient. Although this paper is primarily concerned with the approximation of the Randles–Sevcik function, some examples are included that illustrate how Thiele rational interpolation can be employed to generate useful approximations to other functions of interest in scientific work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abramowitz, M., and Stegun, I. (1964). Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series No. 55, U.S. Govt. Printing Office, Washington.

    Google Scholar 

  • Cuyt, A., and Wuytack, L. (1987). Nonlinear Methods in Numerical Analysis, North-Holland, New York.

    Google Scholar 

  • Dalrymple-Alford, P., Goto, M., and Oldham, K. B. (1977). Shapes of derivative neopolaragrams. J. Electroanal. Chem. 85, 1–15.

    Google Scholar 

  • Fike, C. T. (1968). Computer Evaluation of Mathematical Functions, Chap. 9, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Graves-Morris, P. R., and Hopkins, T. R. (1981). Reliable rational interpolation. Numerische Mathematik 36, 111–128.

    Google Scholar 

  • Hart, J. F., Cheney, E. W., Lawson, C. L., Maehly, H. J., Mesztenyi, C. K., Rice, J. R., Thacher, H. G., and Witzgall, C. (1968). Computer Approximations, John Wiley, New York.

    Google Scholar 

  • Hildebrand, F. B. (1974). Introduction to Numerical Analysis, McGraw-Hill, New York, pp. 496–497.

    Google Scholar 

  • Lether, F. G., and Evans, O. (1985). An algorithm for the computation of the reversible Randles-Sevcik function in electrochemistry. Appl. Math. Comp. 16, 253–264.

    Google Scholar 

  • Lether, F. G., and Shivpuri, V. (1990). Chebyshev methods for the numerical computation of the reversible Randles-Sevcik function. Computers Chem. 14, 177–181.

    Google Scholar 

  • Lether, F. G., and Wenston, P. (1987). An algorithm for the numerical evaluation of the reversible Randles-Sevcik function. Computers Chem. 11, 179–183.

    Google Scholar 

  • Luke, Y. L. (1969). The Special Functions and Their Approximation II, Academic Press, New York.

    Google Scholar 

  • Mayers, A. (1966). Interpolation by rational functions. In Handscomb, D. C. (ed.), Methods of Numerical Approximation, Pergamon, Oxford.

    Google Scholar 

  • Milne-Thomson, L. M. (1951). The Calculus of Finite Differences, MacMillan, London.

    Google Scholar 

  • Moshier, S. L. (1989). Methods and Programs for Mathematical Functions, Ellis Horwood, Chichester.

    Google Scholar 

  • Natarajan, A., and Mohankumar, N. (1997). An algorithm for the numerical evaluation of the Randles-Sevcik function. Computers Chem. 21, 315–318.

    Google Scholar 

  • Oldham, K. B. (1979). Analytical expressions for the reversible Randles-Sevcik function. J. Electroanal. Chem. 105, 373–375.

    Google Scholar 

  • Oldham K. B. (1983). The reformulation of an infinite sum via semiintegration. SIAM J. Math. Anal. 14, 974–981.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. B. (1992). Numerical Recipes in FORTRAN, the Art of Scientific Computing, Second Edition, Cambridge University Press, Cambridge.

    Google Scholar 

  • Randles, J. E. B. (1948). Cathod-ray Polarography II. Trans. Faraday Soc. 44, 327–338.

    Google Scholar 

  • Reinmuth, W. H. (1962). Theory of diffusion limited charge transfer processes in electroanalytical techniques. Anal. Chem. 34, 1446–1454.

    Google Scholar 

  • Sevcik, A. (1948). Oscillographic polargraphy with periodic triangular voltage. Collect. Czech. Chem. Commun. 13, 349–377.

    Google Scholar 

  • Thiele, T. N. (1909). Interpolationsrechnung, Teubner, Leipzig.

    Google Scholar 

  • van der Laan, C. G., and Temme, N. M. (1986). Calculation of Special Functions: The Gamma Function, the Exponential Integrals and Error-like Functions, CWI, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lether, F.G. Thiele Rational Interpolation for the Numerical Computation of the Reversible Randles–Sevcik Function in Electrochemistry. Journal of Scientific Computing 14, 259–274 (1999). https://doi.org/10.1023/A:1023269502728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023269502728

Navigation