Skip to main content
Log in

The influence of flow and other environmental factors on benthic invertebrates in the Sacramento River, U.S.A.

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We examined how community composition of benthic invertebrates was related to current velocities and other environmental variables within the Sacramento River in California, USA. Invertebrates were collected in 1998 and 1999 from 10 sites over a gradient of 187 river kilometers. Canonical correspondence analysis revealed that current velocity was the most important variable explaining community composition. Other predicator variables that influenced community composition included periphyton biomass, altitude, and disturbance. Because of the importance of velocity in structuring benthic communities in this system, alterations of flow caused by changes in river regulation structures should be carefully considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armitage, P. D., 1984. Environmental changes induced by stream regulation and their effect on lotic macroinvertebrate communities. In Lillehammer, A. & S. J. Saltveit, (eds), Regulated Rivers. University Press, Oslo, Norway.

    Google Scholar 

  • Armitage, P. D., R. J. M. Gunn, M. T. Furse, J. F. Wright & D. Moss, 1987. The use of prediction to assess macroinvertebrate response to river regulation. Hydrobiologia 144: 25–32.

    Google Scholar 

  • Biggs, B. J. F., 1995. The contribution of flood disturbance, catchment geology and land use to the habitat template of periphyton in stream ecosystems. Freshwater Biology 33: 419–438.

    Google Scholar 

  • Bowlby, J. N. & J. C. Roff, 1986. Trout biomass and habitat relationships in southern Ontario streams. Transactions of the American Fisheries Society 115(4): 503–514.

    Google Scholar 

  • Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift: a review. Hydrobiologia 166: 77–93.

    Google Scholar 

  • Castleberry, D. T., J. J. Cech Jr., D. C. Erman, D. Hankin, M. Healey, G. M. Kondolf, M. Mangel, M. Mohr, P. B. Moyle, J. Nielsen, T. P. Speed & J. G. Williams, 1996. Uncertainty and instream flow Standards. Fisheries 21(8): 20–21.

    Google Scholar 

  • Charpentier, B. & A. Morin, 1994. Effect of current velocity on ingestion rates of blackfly larvae. Can. J. Fish. aquat. Sci. 51: 1615–1619.

    Google Scholar 

  • Cortes, R. M. V., M. T. Ferreira, S. V. Oliveira & D. Oliveira, 2002. Macroinvertebrate community structure in a regulated river segment with different flow conditions. River Research and Applications 18: 367–382.

    Google Scholar 

  • Doisy, K. E. & C. F. Rabeni, 2001. Flow conditions, benthic food resources, and invertebrate community composition in a low-gradient stream in Missouri. J.n. am. Benthol. Soc. 20(1): 17–32.

    Google Scholar 

  • Eaton, A. D., L. S. Clesceri & A. E. Greenburg (eds), 1995. Standard methods for the examination of water and wastewater. Baltimore, Maryland, American Public Health Association, United Book Press, Inc.

  • Edington, J. M., 1968. Habitat preferences in net-spinning caddis larvae with special reference to the influence of water velocity. Journal of Animal Ecology 37: 675–692.

    Google Scholar 

  • Ellis, R. J. & H. Gowing, 1957. Relationship between food supply and condition of wild brown trout, Salmo trutta Linnaeus, in a Michigan stream. Limnology and Oceanography 11(4): 299–308.

    Google Scholar 

  • Fuller, R. L. & K. W. Stewart, 1979. Stonefly (Plecoptera) food habits and prey preferences in the Dolores River, Colorado. The American Midland Naturalist 101(1): 170–181.

    Google Scholar 

  • Griffith, M. B. & S. A. Perry, 1993. The distribution of macroinvertebrates in the hyporheic zone of two small Appalachian headwater streams. Arch. Hydrobiol. 126(3): 373–384.

    Google Scholar 

  • Gore, J. A., 1989. Models for predicting benthic macroinvertebrate habitat suitability under regulated flows. In Gore, J. A. & G. E. Petts (eds), Alternatives in Regulated River Management, CRC Press, Inc., Boca Raton, Florida: 253–265.

    Google Scholar 

  • Growns, I. O. & J. A. Davis, 1994. Longitudinal changes in near-bed flows and macroinvertebrate communities in a Western Australian stream. J. n. am. Benthol. Soc. 13(4): 417–438.

    Google Scholar 

  • Hinton, D. E., 1998. Multiple stressors in the Sacramento River watershed. In Braunbeck, T., D. E. Hinton & B. Streit (eds), Fish Ecotoxicology, Birkhaeuser Verl., Basel: 303–317.

    Google Scholar 

  • Jowett, I. G. & J. Richardson, 1990. Microhabitat preferences of benthic invertebrates in a New Zealand river and the development of in-stream flow-habitat models for Deleatidium spp. New Zealand Journal of Marine and Freshwater Research 24: 19–30.

    Google Scholar 

  • Lancaster, J. & A. G. Hildrew, 1993. Characterizing in-stream flow refugia. Can. J. Fish. Aquat. Sci. 50: 1663–1675.

    Google Scholar 

  • LaVoie, W. J. & W. A. Hubert, 1996. Use of three types of streammargin habitat by age-0 brown trout late in the growing season. Hydrobiologia 317: 89–95.

    Google Scholar 

  • Merz, J. E. & C. D. Vanicek, 1996. Comparative feeding habits of juvenile chinook salmon, steelhead, and Sacramento squawfish in the lower American River, California. California Fish and Game 82(4): 149–159.

    Google Scholar 

  • Minshall, G. W. & J. N. Minshall, 1977. Microdistribution of benthic invertebrates in a Rocky Mountain (U.S.A.) stream. Hydrobiologia 55(3): 231–249.

    Google Scholar 

  • Moog, O., 1993. Quantification of daily peak hydropower effects on aquatic fauna and management to minimize environmental impacts. Reg. River Res. and Manage. 8: 5–14.

    Google Scholar 

  • Morgan, R. P. R. E. Jacobson, S. B. Weisberg, L. A. McDowell & H. T. Wilson, 1991. Effects of flow alteration to benthic macroinvertebrate communities below the Brighton hydroelectric dam. J. Freshwater Ecology 6(4): 419–429.

    Google Scholar 

  • Muir, W. D. & T. C. Coley, 1996. Diet of yearling chinook salmon and feeding success during downstream migration in the Snake and Columbia Rivers. Northwest Science 70(4): 298–305.

    Google Scholar 

  • Nelson, S. M. & R. A. Roline, 1995. Aquatic macroinvertebrate communities and probable impacts of various discharges: Upper Arkansas River. Technical Memorandum No. 8220-95-4. Technical Service Center, Bureau of Reclamation, Denver, Colorado.

  • Petts, G. E., 1984. Impounded Rivers: Perspectives for Ecological Management. John Wiley & Sons, New York.

    Google Scholar 

  • Pfankuch, D. J., 1975. Stream reach inventory and channel stability evaluation. US Department of Agriculture Forest Service, Region 1, Missoula, Montana.

  • Porter, S. D., T. F. Cuffney, M. E. Gurtz & M. R. Meador, 1993. Methods for collecting algal samples as part of the National Water-Quality Assessment Program: US Geological Survey Open-File Report 93-409, 39 pp.

  • Quinn, J. M. & C. W. Hickey, 1990. Magnitude of effects of substrate particle size, recent flooding, and catchment development on benthic invertebrates in 88 New Zealand rivers. New Zealand Journal of Marine and Freshwater Research 24: 411–427.

    Google Scholar 

  • Rader, R. B. & J. V. Ward, 1988. Influence of regulation on environmental conditions and the macroinvertebrate community in the upper Colorado River. Regulated Rivers: Research and Management 2: 597–618.

    Google Scholar 

  • Rice, S. P., M. T. Greenwood & C. B. Joyce, 2001. Tributaries, sediment sources, and the longitudinal organization of macroinvertebrate fauna along river systems. Can. J. Fish. Aquat. Sci. 58: 824–840.

    Google Scholar 

  • Statzner, B., J. A. Gore & V. H. Resh, 1988. Hydraulic stream ecology: observed patterns and potential applications. J.n. am. Benthol. Soc. 7(4): 307–360.

    Google Scholar 

  • Townsend, C. R., M. R. Scarsbrook & S. Dolédec, 1997. Quantifying disturbance in streams: alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. J.n. am. Benthol. Soc. 16(3): 531–544.

    Google Scholar 

  • (U.S.D.I.) United States Department of the Interior, 1999. Shasta Dam and Reservoir Enlargement: Appraisal Assessment of the potential for Enlarging Shasta Dam and Reservoir. Bureau of Reclamation.

  • Vinson, M. R., 2001. Long-term dynamics of an invertebrate assemblage downstream from a large dam. Ecological Applications 11(3): 711–730.

    Google Scholar 

  • Ward, J. V., 1976. Effect of flow patterns below large dams on stream benthos: a review. In Osborn, J. R. & C. H. Allman, (eds), Instream Flow Needs Symposium, Vol. II. American Fisheries Society, Bethesda, Maryland.

  • Ward, J. V. & J. A. Stanford, 1979. Ecological factors controlling stream zoobenthos with emphasis on thermal modification of regulated streams. In Ward, J. V. & J. A. Stanford, (eds), The Ecology of Regulated Streams. Plenum Press, New York: 35–55.

    Google Scholar 

  • Winget, R. N., 1984. Brachycentrus americanus and B. occidentalis (Trichoptera) in a regulated stream. Journal of Freshwater Ecology 2(4): 373–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, S.M., Lieberman, D.M. The influence of flow and other environmental factors on benthic invertebrates in the Sacramento River, U.S.A.. Hydrobiologia 489, 117–129 (2002). https://doi.org/10.1023/A:1023268417851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023268417851

Navigation