Skip to main content
Log in

Solution of the Robin problem for the Laplace equation

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. F. Ahner: The exterior Robin problem for the Helmholtz equations. J. Math. Anal. Appl. 66 (1978), 37–54.

    Google Scholar 

  2. R. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402.

    Google Scholar 

  3. M. Brelot: Éléments de la théorie classique du potentiel. Centre de documentation universitaire. Paris, 1961.

    Google Scholar 

  4. Yu. D. Burago, V. G. Maz'ya: Potential theory and function theory for irregular regions. Seminars in mathematics V. A. Steklov Mathematical Institute. Leningrad, 1969. (In Russian.)

  5. M. Chlebík: Tricomi potentials. Thesis. Mathematical Institute of the Czechoslovak Academy of Sciences. Praha, 1988. (In Slovak.)

    Google Scholar 

  6. H. Federer: Geometric Measure Theory. Springer-Verlag, 1969.

  7. I. Gohberg, A. Markus: Some remarks on topologically equivalent norms. Izvestija Mold. Fil. Akad. Nauk SSSR 10(76) (1960), 91–95. (In Russian.)

    Google Scholar 

  8. N. V. Grachev, V. G. Maz'ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19(4) (1986), 60–64. (In Russian.)

    Google Scholar 

  9. N. V. Grachev, V. G. Maz'ya: Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-06, Linköping Univ., Sweden.

  10. N. V. Grachev, V. G. Maz'ya: Invertibility of boundary integral operators of elasticity on.surfaces with conic points. Report LiTH-MAT-R-91-07, Linköping Univ., Sweden.

  11. N. V. Grachev, V. G. Maz'ya: Solvability of a boundary integral equation on a polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.

  12. H. Heuser: Funktionalanalysis. Teubner, Stuttgart, 1975.

    Google Scholar 

  13. R. E. Kleinman, W. L. Wendland: On Neumann's method for the Helmholtz equation. J. Math. Anal. Appl. 57 (1977), 170–202.

    Google Scholar 

  14. J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980.

    Google Scholar 

  15. J. Král: The Fredholm method in potential theory. Trans. Amer. Math. Soc. 125 (1966), 511–547.

    Google Scholar 

  16. J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential heory. Aplikace matematiky 31 (1986), 239–308.

    Google Scholar 

  17. N. L. Landkof: Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966.

    Google Scholar 

  18. J. Lukeš, J. Malý: Measure and Integral. Matfyzpress, 1995.

  19. V. G. Maz'ya: Boundary integral equations. Sovremennyje problemy matematiki, fundamental'nyje napravlenija, 27. Viniti, Moskva, 1988. (In Russian.)

    Google Scholar 

  20. D. Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslov. Math. J. 47 (1997), 651–679.

    Google Scholar 

  21. D. Medková: Solution of the Neumann problem for the Laplace equation. Czechoslov. Math. J. (in print).

  22. I. Netuka: The Robin problem in potential theory. Comment. Math. Univ. Carolinae 12 (1971), 205–211.

    Google Scholar 

  23. I. Netuka: Generalized Robin problem in potential theory. Czechoslov. Math. J. 22(97) (1972), 312–324.

    Google Scholar 

  24. I. Netuka: An operator connected with the third boundary value problem in potential theory. Czechoslov. Math. J. 22(97) (1972), 462–489.

    Google Scholar 

  25. I. Netuka: The third boundary value problem in potential theory. Czechoslov. Math. J. 2(97) (1972), 554–580.

    Google Scholar 

  26. I. Netuka: Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383.

    Google Scholar 

  27. I. Netuka: Continuity and maximum principle for potentials of signed measures. Czechoslov. Math. J. 25 (1975), 309–316.

    Google Scholar 

  28. J. Plemelj: Potentialtheoretische Untersuchungen. B. G. Teubner, Leipzig, 1911.

    Google Scholar 

  29. A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Applicable Analysis 45 (1992), 1–4, 135–177.

    Google Scholar 

  30. A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Erratum. Applicable Analysis 56 (1995), 109–115.

    Google Scholar 

  31. V. D. Sapožnikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries Problems Mat. Anal. Boundary Value. Problems Integr. Equations. Izdat. Leningr. Univ., Leningrad, 1966, pp. 35–44. (In Russian.)

    Google Scholar 

  32. M. Schechter: Principles of Funtional Analysis. Academic Press, London, 1971.

    Google Scholar 

  33. K. Yosida: Functional Analysis. Springer Verlag, 1965.

  34. W. P. Ziemer: Weakly Differentiable Functions: Sobolev spaces and functions of bounded variation. Graduate Text in Mathematics 120. Springer-Verlag, 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medková, D. Solution of the Robin problem for the Laplace equation. Applications of Mathematics 43, 133–155 (1998). https://doi.org/10.1023/A:1023267018214

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023267018214

Navigation