Skip to main content
Log in

Spectral-Luminescent Properties and Electronic Structure of the Chlorin p 6 Derivatives with an Extended Conjugated Bond System

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

On the basis of spectral-luminescent investigations it is shown that the introduction of an additional hexatomic imidic ring into the chlorin p 6 derivatives substantially shifts the absorption bands to the longwave spectral region but causes no decrease in the fluorescence quantum yield, i.e., it is not accompanied by an increase in the nonradiative deactivation rate of the excited singlet state S 1. It follows from quantum-chemical calculations and also from the experimental data that the presence of this cycle in free bases results in the extension of the conjugated bond system and in the reduction of the singlet–triplet interval ΔE(S 1T 1) as compared to chlorin p 6. In contrast to the majority of earlier investigated porphyrins and chlorins, the introduction of the central ion Zn into the chlorin p 6 cycloimide derivative causes an increase in the quantum yield of fluorescence, lowering of the energy of the excited triplet state T 1, and a noticeable (by ∼600 cm−1) increase in the ΔE(S 1T 1) interval in comparison with the corresponding free bases. The data obtained are associated with the characteristic features of the extension of conjugated bond systems for the free bases of cycloimidoderivatives of chlorin p 6 (22-membered cyclic polyene) and of their Zn complexes (20-membered cyclic polyene).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. K. Pandey, F.-U. Shiau, K. Ramachandran, T. J. Dougherty, and K. M. Smith, J. Chem. Soc., Perkin Trans. I, 1377–1385 (1992).

  2. K. R. Adams, M. C. Berenbaum, R. Bonnett, A. N. Nizhnik, A. Salgado, and M. A. Valles, J. Chem. Soc., Perkin Trans. I, 1465–1470 (1992).

  3. A. A. Frolov, E. I. Zenkevich, G. P. Gurinovich, and G. A. Kochubeev, J. Photochem. Photobiol. B: Biol., 7, 43–56 (1990).

    Google Scholar 

  4. A. F. Mironov, Ross. Khim. Zh., 42, 23–36 (1998).

    Google Scholar 

  5. G. A. Kochubeev, A. A. Frolov, and G. P. Gurinovich, Khim. Fiz., 8, 1184–1190 (1989).

    Google Scholar 

  6. S. Kimel, B. J. Tromberg, W. G. Roberts, and M. W. Berns, Photochem. Photobiol., 50, 175–183 (1989).

    Google Scholar 

  7. A. P. Losev and N. D. Kochubeev, Khim. Fiz., 9, 616–622 (1990).

    Google Scholar 

  8. J. D. Spikes, J. Photochem. Photobiol. B: Biol., 6, 259–274 (1990).

    Google Scholar 

  9. B. D. Richter, M. D. Bohorquez, M. A. J. Rodgers, and M. E. Kenney, Photochem. Photobiol., 55, 677–680 (1992).

    Google Scholar 

  10. R. Bonnett, Chem. Soc. Rev., 24, 19–33 (1995).

    Google Scholar 

  11. A. Rungta, C. Zheng, J. R. Missert, W. R. Potter, T. J. Dougherty, and R. K. Pandey, Bioorg. Medicin. Lett., 10, 1463–1466 (2000).

    Google Scholar 

  12. B. C. Robinson, K. M. Barkigia, M. W. Renner, and J. Fajer, J. Phys. Chem., 103, 7324–7328 (1999).

    Google Scholar 

  13. R. K. Pandey and G. Zheng, in: K. M. Kadish, K. M. Smith, and R. Guilard (eds.) The Porphyrin Handbook, Vol. 6, Ch. 43, Academic Press, New York (2000), pp. 157–230.

    Google Scholar 

  14. A. Ya. Khairullina, M. V. Parkhots, T. V. Oleinik, L. M. Bui, and B. M. Dzhagarov, Opt. Spektrosk., 91, 54–60 (2001).

    Google Scholar 

  15. J. Moan, Photochem. Photobiol., 43, 681–690 (1986).

    Google Scholar 

  16. A. P. Losev, E. I. Sagun, and I. N. Nichiporovich, Khim. Fiz., 6, 907–914 (1987).

    Google Scholar 

  17. E. I. Sagun, E. I. Zenkevich, V. N. Knyukshto, A. M. Shulga, D. A. Starukhin, and C. von Borczyskowski, Chem. Phys., 275, 211–237 (2002).

    Google Scholar 

  18. A. F. Mironov and V. S. Lebedeva, Tetrahedron Lett., 39, 905–908 (1998).

    Google Scholar 

  19. A. F. Mironov, V. S. Lebedeva, N. I. Kazachkina, and R. I. Yakubovskaya, Proc. SPIE, 3563, 59–67 (1999).

    Google Scholar 

  20. E. Zenkevich, E. Sagun, V. Knyukshto, A. Shulga, A. Mironov, O. Efremova, R. Bonnett, S. Pinda Songca, and M. Kassem, J. Photochem. Photobiol. B: Biol., 33, 171–180 (1996).

    Google Scholar 

  21. J. Del Bene and H. H. Jaffe, J. Chem. Phys., 48, 1807–1813 (1968).

    Google Scholar 

  22. R. L. Ellis, G. Kuehnlenz, and H. H. Jaffe, Theor. Chim. Acta, 26, 131–140 (1972).

    Google Scholar 

  23. V. A. Kuz’mitskii, in: V. A. Koptyuga, et al. (eds.), in: Collection of Abstr. of Programs for Molecular Spectroscopy [in Russian], Novosibirsk (1977), pp. 96–97.

  24. W. Hoppe, G. Will, J. Gassmann, and H. Weichselgartner, Z. Kristallogr., 128, 18–35 (1969).

    Google Scholar 

  25. M. J. S. Dewar, E. G. Zoebisch, E. F. Healey, and J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902–3909 (1985).

    Google Scholar 

  26. J. J. P. Stewart, MOPAC 6: General Molecular Orbital Package (QCPE 445), F. J. Seiler Research Lab., US Air Force Academy, CO 80840 (1990).

  27. P. Jacques, J. Faure, O. Shalvet, and H. H. Jaffe, J. Phys. Chem., 85, 473–479 (1981).

    Google Scholar 

  28. V. G. Maslov, Teor. E?ksp. Khim., 20, 288–298 (1984).

    Google Scholar 

  29. M. Gouterman, in: D. Dolphin (ed.), The Porphyrins, Vol. 3, New York (1978), pp. 1–165.

  30. V. A. Kuz’mitskii, K. N. Solov’ev, and M. P. Tsvirko, in: N. S. Enikolopyan (ed.), Porphyrins: Spectroscopy, Electrochemistry, Applications [in Russian], Moscow (1987), pp. 7–126.

  31. A. T. Gradyushko and M. P. Tsvirko, Opt. Spektrosk., 31, 548–556 (1971).

    Google Scholar 

  32. S. S. Dvornikov, V. N. Knyukshto, K. N. Solov’ev, and M. P. Tsvirko, Opt. Spektrosk., 46, 689–695 (1979).

    Google Scholar 

  33. S. S. Dvornikov, V. N. Knyukshto, and K. N. Solov’ev, Opt. Spektrosk., 51, 285–292 (1981).

    Google Scholar 

  34. A. Ghosh, in: K. M. Kadish, K. M. Smith, and R. Guilard (eds.), The Porphyrin Handbook, Vol. 7, Ch. 47, Academic Press, New York, (2000), pp. 1–38.

    Google Scholar 

  35. A. T. Gradyushko, K. N. Solov’ev, and M. P. Tsvirko, Biofizika, 23, 757–761 (1978).

    Google Scholar 

  36. V. N. Knyukshto, A. M. Shul’ga, E. I. Sagun, and É. I. Zen’kevich, Zh. Prikl. Spektrosk., 65, 900–907 (1998).

    Google Scholar 

  37. L. Roitman, E. Erenberg, and N. Kobayashi, J. Photochem. Photobiol A: Chem., 77, 23–28 (1994).

    Google Scholar 

  38. G. W. Robinson and R. P. Frosch, J. Chem. Phys., 38, 1187–1194 (1963).

    Google Scholar 

  39. W. Siebrand, J. Chem. Phys., 46, 440–447 (1967).

    Google Scholar 

  40. V. I. Gael’, V. A. Kuz’mitskii, and K. N. Solov’ev, Zh. Prikl. Spektrosk., 55, 282–290 (1991).

    Google Scholar 

  41. A. T. Gradyushko, K. N. Solov’ev, and M. P. Tsvirko, Opt. Spektrosk., 44, 1123–1130 (1978).

    Google Scholar 

  42. K. N. Solov’ev, A. T. Gradyushko, M. P. Tsvirko, and V. N. Knyukshto, Vestsi Akad. Navuk Belarusi, Ser. Fiz.-Mat. Navuk, No. 1, 57–63 (1978).

    Google Scholar 

  43. S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State [Russian translation], Ch. 3, Moscow, (1972), pp. 80–134.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuz'mitskii, V.A., Knyukshto, V.N., Gael', V.I. et al. Spectral-Luminescent Properties and Electronic Structure of the Chlorin p 6 Derivatives with an Extended Conjugated Bond System. Journal of Applied Spectroscopy 70, 43–53 (2003). https://doi.org/10.1023/A:1023264223430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023264223430

Navigation