Skip to main content
Log in

Superconductivity and Ferromagnetism in Nonadiabatic Systems with Magnetic Impurity: A Step Beyond the Migdal Theorem

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The possibility of the ferromagnetic ordering of a paramagnetic impurity in nonadiabatic superconducting systems is investigated. The effect of the relative shift of the Fermi surface by the internal magnetic field, the exchange interaction of the impurity ions through the conductivity electrons, and the spin–orbit interaction of the nonmagnetic impurity are taken into account. The problem is solved in the linear approximation with respect to the nonadiabaticity by taking the vertex and crossing diagrams corresponding to the electron–phonon and the electron–impurity interactions into account. We obtain basic equations of the superconductivity theory for nonadiabatic systems with the ferromagnetic ordering of the impurity spins and show that the nonadiabaticity alters the superconducting transition temperature T c and the critical impurity concentration. The behavior of the magnetic-ordering temperature T C as a function of the impurity concentration c in the superconductive state of the nonadiabatic system is also investigated. We obtain the phase diagram (T,c) and show that the nonadiabaticity effects lead to the enlargement of the domain where the superconductivity and the ferromagnetism exist simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Gunnarson, Rev. Modern Phys., 69, 575 (1997).

    Google Scholar 

  2. W. Ku, W. E. Pickett, R. T. Scalettar, and A. G. Eguiluz, “Ab initio investigation of collective charge excitations in MgB2,” cond-mat/0105389 (2001).

  3. A. Lanzara, P. V. Bogdanov, X. I. Zhou, et al., Nature, 412, 510 (2001).

    Google Scholar 

  4. Y. Bardeen, Y. N. Cooper, and Y. R. Shrieffer, Phys. Rev., 106, 162 (1957); 108, 1175 (1957).

    Google Scholar 

  5. N. N. Bogoliubov, D. N. Zubarev, and Yu. A. Tserkovnikov, Dokl. Akad. Nauk SSSR, 117, 788 (1957).

    Google Scholar 

  6. N. N. Bogoliubov, JETP, 7, 41, 51 (1958).

    Google Scholar 

  7. N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A New Method in the Theory of Superconductivity [in Russian], Acad. Sci. USSR, Moscow (1958); English transl., Chapman and Halls, London (1959).

    Google Scholar 

  8. D. N. Zubarev, Usp. Fiz. Nauk, 71, 71 (1960).

    Google Scholar 

  9. A. V. Migdal, JETP, 7, 996 (1958).

    Google Scholar 

  10. A. S. Éliashberg, JETP, 38, 960 (1960).

    Google Scholar 

  11. W. L. Mcmillan, Phys. Rev., 167, 331 (1968).

    Google Scholar 

  12. N. N. Bogoliubov, Usp. Fiz. Nauk, 67, 549 (1959).

    Google Scholar 

  13. L. P. Gor'kov, JETP, 7, 505 (1958).

    Google Scholar 

  14. L. A. Abrikosov and L. P. Gor'kov, JETP, 8, 1090 (1959).

    Google Scholar 

  15. L. A. Abrikosov and L. P. Gor'kov, JETP, 12, 1243 (1961).

    Google Scholar 

  16. S. Scalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev. A, 136, 1500 (1964).

    Google Scholar 

  17. L. P. Gor'kov and A. I. Rusinov, JETP, 19, 922 (1964).

    Google Scholar 

  18. N. M. Plakida, High Temperature Superconductors [in Russian], Moscow (1996); English transl., Springer, Berlin (1995).

  19. V. A. Moskalenko, P. Entil, and D. F. Digor, Phys. Rev. B, 59, 619 (1999).

    Google Scholar 

  20. W. Weber, Adv. Solid State Phys., 28, 141 (1988).

    Google Scholar 

  21. V. A. Ginzburg, E. G. Maksimov, Sverkhprovodimost': Fiz., Khim., Tekh., 5, 1453 (1992).

    Google Scholar 

  22. G. M. Vujicic, V. L. Aksenov, N. M. Plakida, and S. Stamenkovic, Phys. Lett. A, 73, 439 (1979); J. Phys. C, 14, 2377 (1981).

    Google Scholar 

  23. N. M. Plakida, V. L. Aksenov, and S. S. Dreschler, Europhys. Lett., 4, 1309 (1987).

    Google Scholar 

  24. J. E. Hirsch and D. J. Scalapino, Phys. Rev. Lett., 56, 2732 (1986).

    Google Scholar 

  25. J. Fridel, J. Phys: Condensed Matter, 1, 7757 (1989).

    Google Scholar 

  26. V. A. Moskalenko, M. E. Palistrant, and V. M. Vakalyuk, Sov. Phys. Usp., 34, 717 (1991).

    Google Scholar 

  27. F. G. Kochorbé and M. E. Palistrant, JETP, 77, 442 (1993); Theor. Math. Phys., 96, 1083 (1993).

    Google Scholar 

  28. O. V. Danylenko and O. V. Dolgov, Phys. Rev. B, 63, 094506-1 (2001); cond-mat/0007189 (2000).

    Google Scholar 

  29. L. Pietronero, S. Strässler, and C. Grimaldi, Phys. Rev. B, 52, 10516 (1995).

    Google Scholar 

  30. C. Grimaldi, L. Pietronero, and S. Strässler, Phys. Rev. B, 52, 10530 (1995).

    Google Scholar 

  31. M. L. Kulik and R. Zeyher, Phys. Rev. B, 49, 4395 (1994).

    Google Scholar 

  32. R. Zeyher and M. L. Kulik, Phys. Rev. B, 53, 2850 (1996).

    Google Scholar 

  33. A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics [in Russian], Moscow (1962); English transl., Dover, New York (1963).

  34. M. E. Palistrant, Theor. Math. Phys., 119, 761 (1999).

    Google Scholar 

  35. Yu. A. Izymov and Yu. N. Skryabin, Phys. Stat. Sol. (b), 61, 9 (1974).

    Google Scholar 

  36. T. Tzuzuki, Progr. Theor. Phys., 35, 183 (1966).

    Google Scholar 

  37. M. E. Palistrant and F. G. Kochorbe, J. Supercond.: Incorp. Novel Magnetism, 15, 113 (2002).

    Google Scholar 

  38. M. E. Palistrant, Fiz. Nizk. Temp., 28, 157 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palistrant, M. Superconductivity and Ferromagnetism in Nonadiabatic Systems with Magnetic Impurity: A Step Beyond the Migdal Theorem. Theoretical and Mathematical Physics 135, 566–584 (2003). https://doi.org/10.1023/A:1023243704871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023243704871

Navigation