Skip to main content
Log in

Vitreous Is a Barrier in Nonviral Gene Transfer by Cationic Lipids and Polymers

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate the role of vitreous in nonviral gene delivery into retinal pigment epithelial (RPE) cells.

Methods. Human RPE cell line D407 was cultured in six-well plates. Bovine vitreous, hyaluronan, or DMEM was added on the cells. Complexes of DNA and cationic carriers (polyethyleneimine, poly-L-lysine, DOTAP liposomes) were pipetted onto the vitreous, hyaluronan, or DMEM. Cellular uptake of DNA was studied with ethidium monoazide DNA and gene expression with GFP-plasmid complexes. FITC-dextrans and FITC-polylysines were used to probe the effects of the size and cationic charge on permeation in the vitreous in a similar experimental setup. Fluorescent cells were analyzed by flow cytometry.

Results. Vitreous decreased the cellular uptake of DNA complexes 2-30 times, and GFP expression was also impaired. In hyaluronan solutions the cellular uptake of the complexes was also decreased significantly in most cases. In vitreous, cellular uptake of all FITC-dextrans decreased slightly, and uptake of poly-L-lysines was decreased substantially, whereas in hyaluronan solutions the effects were mild or nonexistent.

Conclusions. Polymeric and liposomal gene delivery is substantially limited by the vitreous. This is probably because of the size and charge of the retinal gene delivery after intravitreal injections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Cayouette, D. Behn, M. Sendtner, P. Lachapelle, and C. Gravel. Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse. J. Neurosci. 18:9282-9293 (1998).

    Google Scholar 

  2. M. Akimoto, S. Miyatake, J. Kogishi, M. Hangai, K. Okazaki, J. C. Takahashi, M. Saiki, M. Iwaki, and Y. Honda. Adenovirally expressed basic fibroblast growth factor rescues photoreceptor cells in RCS rats. Invest. Ophthalmol. Vis. Sci. 40:273-279 (1999).

    Google Scholar 

  3. J. Bennett, Y. Zeng, R. Bajwa, L. Klatt, Y. Li, and A. M. Maguire. Adenovirus-mediated delivery of rhodopsin-promoted bcl-2 results in a delay in photoreceptor cell death in the rd/rd mouse. Gene Ther. 5:1156-1164 (1998).

    Google Scholar 

  4. M. Honda, T. Sakamoto, T. Ishibashi, H. Inomata, and H. Ueno. Experimental subretinal neovascularization is inhibited by adenovirus-mediated soluble VEGF/flt-1 receptor gene transfection: a role of VEGF and possible treatment for SR in age-related macular degeneration. Gene Ther. 7:978-985 (2000).

    Google Scholar 

  5. W. V. Hauswirth and L. Beaufrere. Ocular gene therapy: Quo vadis? Invest. Ophthalmol. Vis. Sci. 40:2821-2826 (2000).

    Google Scholar 

  6. H. Miyoshi, M. Takahashi, F. Gage, and I. Verma. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. USA 94:10319-10323 (1997).

    Google Scholar 

  7. T. Li, M. Adamian, D. Roof, E. Berson, T. Dryja, B. Roessler, and B. Davidson. In vivo transfer of a reporter gene to the retina mediated by an adenoviral vector. Invest. Ophtalmol. Vis. Sci. 35:2543-2549 (1994).

    Google Scholar 

  8. B. Spencer, S. Agarwala, M. Miskulin, M. Smith, and C. R. Brandt. Herpes simplex virus-mediated gene delivery to the rodent visual system. Invest. Ophtalmol. Vis. Sci. 41:1392-1401 (2000).

    Google Scholar 

  9. J. Ray, J. H. Wolfe, G. D. Aguirre, and M. E. Haskins. Retroviral cDNA transfer to the RPE: stable expression and modification of metabolism. Invest. Ophtalmol. Vis. Sci. 39:1658-1666 (1998).

    Google Scholar 

  10. Y. K. Lai, P. Rakoczy, I. Constable, and F. Rolling. Adeno associated virus-mediated gene transfer into human retinal pigment epithelium cells. Aust. N. Z. Ophtalmol. 26:77-79 (1998).

    Google Scholar 

  11. I. Masuda, T. Matsuo, T. Yasuda, and N. Matsuo. Gene transfer with liposomes to the intraocular tissues by different routes of administration. Invest. Ophthalmol. Vis. Sci. 37:1914-1920 (1996).

    Google Scholar 

  12. T. Matsuo, I. Masuda, T. Yasuda, and N. Matsuo. Gene transfer to the retina of rat by liposome eye drops. Biochem. Biophys. Res. Commun. 219:947-950 (1996).

    Google Scholar 

  13. A. Urtti, J. Polansky, G. M. Lui, and F. Szoka. Gene delivery and expression in human retinal pigment epithelial cells: effects of synthetic carriers, serum, extracellular matrix and viral promoters. J. Drug Target. 7:413-421 (2000).

    Google Scholar 

  14. K. Abul-Hassan, R. Walmsley, and M. Boulton. Optimization of non-viral gene transfer to human primary retinal pigment epithelial cells. Curr. Eye Res. 20:361-366 (2000).

    Google Scholar 

  15. A. M. Tonjum. Permeability of horseradish peroxidase in the rabbit corneal epithelium. Acta Ophtalmol. 52:650-658. (1974).

    Google Scholar 

  16. A. M. Tonjum. Movement of horseradish peroxidase in the cornea, sclera and the anterior uvea. Acta Ophtalmol. 55:771-780 (1977).

    Google Scholar 

  17. D. Maurice and S. Mishima. Ocular pharmacokinetics. In: L. M. Sears (ed.), Pharmacology of the Eye, Springer-Verlag, Berlin, 1984, pp. 19-102.

    Google Scholar 

  18. E. R. Berman. Biochemistry of the Eye. Plenum Press, New York, 1991, p. 292.

    Google Scholar 

  19. P. N. Bishop. Structural molecules and supramolecular organisation of the vitreous gel. Prog. Retin. Eye Res. 19:323-344 (2000).

    Google Scholar 

  20. M. Ruponen, S. Ylä-Herttuala, and A. Urtti. Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochim. Biophys. Acta 1415:331-341 (1999).

    Google Scholar 

  21. N. N. Sanders, S. C. Smedt, and J. Demeester. The physical properties of biogels and their permeability for macromolecular drugs and colloidal drug carriers. J. Pharm. Sci. 89:835-849 (2000).

    Google Scholar 

  22. O. Boussif, F. Lezoualch, M. D. Zanta, D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethyleneimine. Proc. Natl. Acad. Sci. USA 92:7297-7301 (1995).

    Google Scholar 

  23. D. D. Mosser, A. W. Caron, P. Bourget, P. Jolicoeur, and B. Massie. Use of a discistronic expression cassette encoding the green fluorescent protein for the screening and selection of cells expressing inducible gene products. BioTech 22:150-161 (1997).

    Google Scholar 

  24. M. Ruponen, S. Rönkkö, P. Honkakoski, J. Pelkonen, and A. Urtti. Extracellular glycosaminoglycans modify cellular trafficking of lipoplexes and polyplexes. J. Biol. Chem. 276:33875-33880 (2001).

    Google Scholar 

  25. G. R. McGregor and C. T. Caskey. Construction of plasmids that express E. coli beta-galactosidase in mammalian cells. Nucleic Acids Res. 17:2365(1989).

    Google Scholar 

  26. A. A. Davis, P. S. Bernstain, D. Bok, J. Turner, M. Nachtigal, and R. C. Hunt. A human retinal pigment epithelial cell line that retains epithelial characteristics after prolonged culture. Invest. Ophtalmol. Vis. Sci. 36:955-964 (1995).

    Google Scholar 

  27. Z. Hyvönen, A. Plotniece, I. Reine, B. Checkavichus, G. Duburs, and A. Urtti. Novel cationic amphiphilic 1,4-dihydropyridine derivatives for DNA delivery. Biochim. Biophys. Acta 1509:451-466 (2000).

    Google Scholar 

  28. I. Jääskeläinen, S. Peltola, P. Honkakoski, J. Mönkkönen, and A. Urtti. A lipid carrier with a membrane active component and a small complex size are required for efficient cellular delivery of anti-sense phosphorothioate oligonucleotides. Eur. J. Pharm. Sci. 10:187-193 (2000).

    Google Scholar 

  29. I. Jäädaskeläinen, B. Sternberg, J. Mönkkönen, and A. Urtti. Physicochemical and morphological properties of complexes made of cationic liposomes and oligonucleotides. Int. J. Pharm. 167:191-203 (1998).

    Google Scholar 

  30. R. I. Mahato, Y. Takakura, and M. Hashida. Nonviral vectors for in vivo gene delivery: physicochemical and pharmacokinetic considerations. Crit. Rev. Ther. Drug Carrier Syst. 14:133-172 (1997).

    Google Scholar 

  31. J. Xu, J. J. Heys, V. H. Barocas, and T. W. Randolph. Permeability and diffusion in vitreous humor: Implications for drug delivery. Pharm. Res. 17:664-669 (2000).

    Google Scholar 

  32. I. C. Michaelsson. Textbook of the Fundus of the Eye, 3rd ed.. Churchill Livingstone, Edinburgh, 1980, p. 84.

    Google Scholar 

  33. E. A. Balazs and J. L. Denlinger. The vitreous. In H. Davidson (ed.), The Eye. Academic Press, New York 1984, pp. 533-589.

    Google Scholar 

  34. G. S. Hageman and L. V. Johnson. Structure, composition and function of the retinal interphotoreceptor matrix. Prog. Ret. Res. 10:207-249 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arto Urtti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitkänen, L., Ruponen, M., Nieminen, J. et al. Vitreous Is a Barrier in Nonviral Gene Transfer by Cationic Lipids and Polymers. Pharm Res 20, 576–583 (2003). https://doi.org/10.1023/A:1023238530504

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023238530504

Navigation