Skip to main content
Log in

A Simple Approach to Account for Radial Flow and Boundary Conditions When Kriging Hydraulic Head Fields for Confined Aquifers

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

The estimation and mapping of realistic hydraulic head fields, hence of flow paths, is a major goal of many hydrogeological studies. The most widely used method to obtain reliable head fields is the inverse approach. This approach relies on the numerical approximation of the flow equation and requires specifying boundary conditions and the transmissivity of each grid element. Boundary conditions are often unknown or poorly known, yet they impose a strong signature on the head fields obtained by inverse analysis. A simpler alternative to the inverse approach is the direct kriging of the head field using the measurements obtained at observation wells. The kriging must be modified to incorporate the available information. Use of the dual kriging formalism enables simultaneously estimating the head field, the aquifer mean transmissivity, and the regional hydraulic gradient from head data in steady or transient state conditions. In transient state conditions, an estimate of the storage coefficient can be obtained. We test the approach on simple analytical cases, on synthetic cases with solutions obtained numerically using a finite element flow simulator, and on a real aquifer. For homogeneous aquifers, infinite or bounded, the kriging estimate retrieves the exact solution of the head field, the exact hydrogeological parameters and the flow net. With heterogeneous aquifers, kriging accurately estimates the head field with prediction errors of the same magnitude as typical head measurement errors. The transmissivities are also accurately estimated by kriging. Moreover, if inversion is required, the kriged head along boundaries can be used as realistic boundary conditions for flow simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bear, J., and Jacobs, M., 1965, On the movement of water bodies injected into aquifers: J. Hydrol., v.3, p. 37-57.

    Google Scholar 

  • Bonilla, F. A., and Cushman, J. H., 2000, Role of boundary conditions in convergence and nonlocality of solutions to stochastic flow problems in bounded domains: Water Resour. Res., v.36, no.4, p. 981-997.

    Google Scholar 

  • Chapuis, R. P., 1999, Guide des essais de pompage et leurs interprétations: Les publications du Québec, Québec, Canada, 156 p.

    Google Scholar 

  • Chilès, J. P., and Delfiner, P., 1999, Geostatistics: Modeling Spatial Uncertainty: Wiley, New York, 695 p.

    Google Scholar 

  • Chilès, J. P., and Guilhen, A., 1984, Variogrammes et krigeages pour la gravimétrie et le magnétisme: Sciences de la Terre, Série Informatique Géologique, no.20, p. 455-468.

  • Cooper, H. H., Jr., and Jacob, C. E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: Am. Geophys. Union, v.27, no.4, p. 526l-534.

    Google Scholar 

  • Davis, M. W., and Culhane, P. G., 1984, Contouring very large datasets using kriging: Reidel, Dordrecht, Geostatistics for natural resources characterization: NATO-ASI Ser. C, v.122, p. 599-619.

    Google Scholar 

  • Delay, F., Buoro, A., and de Marsily, G., 2001, Empirical orthogonal functions analysis applied to the inverse problem in hydrogeology: Evaluation of uncertainty and simulation of new solutions: Math. Geol., v.33, no.8, p. 927-949.

    Google Scholar 

  • Delhomme, J. P., 1978, Kriging in the hydrosciences: Adv. in Water Resour., v.1, no.5, p. 251-266.

    Google Scholar 

  • Delhomme, J. P., 1979, Kriging under boundary conditions: Presented at the American Geophysical Union Fall Meeting, San Francisco, December 1979.

  • Delhomme, J. P., Boucher, M., Meunier, G., and Jenson, J., 1981, Apport de la géostatistique à la description des stockages de gaz en aquifère: Revue de l'Institut Français du Pétrole, v.36, no.3, p. 309-327.

    Google Scholar 

  • de Marsily, G., 1986, Quantitative hydrogeology: Groundwater hydrology for engineers: Academic Press, San Diego, CA, 440 p.

    Google Scholar 

  • Dupuit, J., 1863, études théoriques et pratiques sur le mouvement des eaux dans les canaux découverts à travers les terrains perméables, 2nd edn.: Dunod, Paris, 304 p.

    Google Scholar 

  • Fiori, A., Indelman, P., and Dagan, G., 1998, Correlation structure of flow variables for steady flow toward a well with application to highly anisotropic heterogeneous formations: Water Resour. Res., v.34, no.4, p. 699-708.

    Google Scholar 

  • Geo-Slope, 1998, SEEP/W for finite element seepage analysis: User's guide: Geo-Slope International, Calgary, Alta, Canada.

    Google Scholar 

  • Gomez-Hernandez, J. J., Sahuquillo, A., and Capilla, J. E., 1997, Joint sequential simulation of multi-Gaussian fields conditional to both transmissivity and piezometric data. 1: Theory. J. Hydrol., v.203, no.1, p. 162-174.

    Google Scholar 

  • Marcotte, D., and Chouteau, M., 1993, Gravity data transformation by kriging, in Soares, A., ed., Geostatistics Tróia '92: Kluwer Academic, Dordrecht, The Netherlands, Vol. 1, p. 249-269.

    Google Scholar 

  • Marechal, A., 1984, Kriging seismic data in presence of faults: Reidel, Dordrecht, Geostatistics for natural resources characterization: NATO-ASI Ser. C, v.122, p. 271-294.

    Google Scholar 

  • Neuman, S. P., 1984, Role of geostatistics in subsurface hydrology: Reidel, Dordrecht, Geostatistics for natural resources characterization: NATO-ASI Ser. C, v.122, p. 787-816.

    Google Scholar 

  • Osnes, H., 1998, Stochastic analysis of head spatial variability in bounded rectangular heterogeneous aquifers: Water Resour. Res., v.31, no.12, p. 2981-2990.

    Google Scholar 

  • Parriaux, A., and Joliquin, P., 2001, Commune de Dizy: Prospection d'eau au Bois de Sepey: étude # 9501, rapport du 10.07.01, GEOLEP-Laboratoire de géologie, école Polytechnique Fédérale de Lausanne, 12p.

  • Riva, M., Guadagnigni, A., Neuman, S. P., and Franzetti, S., 2001, Radial flow in bounded randomly heterogeneous aquifer: Kluwer Academic, Dordrecht, The Netherlands. Transp. Porous Media, v.45, p. 139-193.

    Google Scholar 

  • Roth, C., and Chilès, J. P., 1997, Modélisation géostatistique des écoulements souterrains: comment prendre en compte les lois physiques: Hydrogéologie, no.1, p. 23-32.

  • Roth, C., de Fouquet, C., Chilès, J. P., and Matheron, G., 1997, Geostatistics applied to hydrogeology's inverse problem: taking boundary conditions into account: Kluwer Academic Publishers, Dordrecht, Geostatistics Wollongong'96, p. 1085-1097.

    Google Scholar 

  • Royer, J. J., and Vieira, P. C., 1984, Dual formalism of kriging: Reidel, Dordrecht, Geostatistics for natural resources characterization: NATO-ASI Ser. C, v.122, p. 691-702.

    Google Scholar 

  • Sanchez-Vila, X., 1997, Radially convergent flow in heterogeneous porous media: Water Resour. Res., v.33, no.7, p. 1633-1641.

    Google Scholar 

  • Todd, D. K., 1980, Groundwater hydrology, 2nd edn.: Wiley, New-York, 535 p.

    Google Scholar 

  • Tonkin, M. J., and Larson, S. P., 2002, Kriging Water Levels with a Regional-Linear and Point-Logarithmic Drift: Ground Water, v.40, no.2, p. 185-193.

    Google Scholar 

  • Yeh, T. C. J., Gutjahr, A. L., and Jin, M., 1995, An iterative cokriging-like technique for ground-water flow modeling: Ground Water, v.33, no.1, p. 338-353.

    Google Scholar 

  • Zhang, D., 1998, Numerical solutions to statistical moment equations of groundwater flow in nonstationary, bounded, heterogeneous media: Water Resour. Res., v.34, no.3, p. 529-538.

    Google Scholar 

  • Zimmerman, D. A., de Marsily, G., Gotway, C. A., Marietta, M. G., Axness, C. L., Beauheim, R. L., Bras, R. L., Carrera, J., Dagan, G., Davies, P. B., Gallegos, D. P., Galli, A., Gomez-Hernandez, J. J., Grindrod, P., Gutjahr, A. L., Kitanidis, P. K., Lavenue, A. M., Mclaughlin, D., Neuman, S. P., Rama Rao, B. S., Ravenne, C., Rubin, Y., 1998, A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow: Water Resour. Res., v.34, no.6, p. 1373-1413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brochu, Y., Marcotte, D. A Simple Approach to Account for Radial Flow and Boundary Conditions When Kriging Hydraulic Head Fields for Confined Aquifers. Mathematical Geology 35, 111–139 (2003). https://doi.org/10.1023/A:1023231404211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023231404211

Navigation