Metabolic Brain Disease

, Volume 13, Issue 3, pp 241–251 | Cite as

Improvement of Chronic Hepatic Encephalopathy in Dogs by the Benzodiazepine-Receptor Partial Inverse Agonist Sarmazenil, but Not by the Antagonist Flumazenil

  • Hein P. Meyer
  • Dink A. Legemate
  • Walter van den Brom
  • Jan Rothuizen
Article

Abstract

Therapeutic modulation of the increased GABAergic tone in chronic hepatic encephalopathy (HE) by the benzodiazepine receptor (BR) antagonist flumazenil (F) has led to conflicting results in humans and animal models for HE. The BR inverse agonist sarmazenil (S) has only been used in animal models of acute HE. Therefore we investigated the effects of intravenous injection of F and S in dogs with chronic HE 8 to 12 weeks after placement of a portocaval shunt and 40% hepatectomy (n=7), compared to sham-operated pair-fed controls (n=7). The HE dogs had hyperammonemia (298±48 μM v 33±3 before surgery (mean±SEM)) and signs of HE at the start of the experiments (0.9±0.1 (scale 0-4)). Three (S3) and 8 (S8) mg/kg of S resulted in a significant improvement of encephalopathy (grade 0.9±0.2 immediately before v 0.5±0.1 after injection (S3) and 0.7±0.1 v 0.3±0.1 (S8)) and increase in mean dominant frequency of the EEC (MDF; 9.1±0.7 Hz v 11.1±0.3 (S3) and 8.9±0.5 v 11.0±0.3 (S8)) in HE dogs, whereas 15 mg/kg of S, 3 and 8 mg/kg of F, and the vehicle had no significant effects. The efficacy of S in these dogs is consistent with an increased GABAergic tone in the pathogenesis of chronic HE. The lack of effects of F makes a role for endogenous benzodiazepines herein unlikely.

Hepatic encephalopathy portosystemic encephalopathy benzodiazepines therapy dog model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Amodio P., Quero J.C., del Piccolo F., Gatta A., and Schalm S.W. (1996). Diagnostic tools for the detection of subclinical hepatic encephalopathy: Comparison of standard and computerized psychometric tests with spectral-EEG. Metab. Brain Dis. 11:315–327.PubMedGoogle Scholar
  2. Amodio P., Marchetti P., del Piccolo F., Beghi A., Comacchio F., Carraro P. et al. (1997). The effect of flumazenil on subclinical psychometric or neurophysiological alterations in cirrhotic patients: A double-blind placebo-controlled study. Clin. Physiol. 17:533–539.CrossRefPubMedGoogle Scholar
  3. Bansky G., Meier P.J., Ziegler W.H., Walser H., Schmid M., and Huber M. (1985). Reversal of hepatic coma by benzodiazepine antagonist Ro15-1788. Lancet i:1324–1325.Google Scholar
  4. Basile A.S., Gammal S.H., Mullen K.D., Jones E.A., and Skolnick P. (1988). Differential responsiveness of cerebellar Purkinje neurons to GABA and benzodiazepine receptor ligands in an animal model of hepatic encephalopathy. J. Neurosci. 8:2414–2421.PubMedGoogle Scholar
  5. Basile A.S., Pannell L., Jaouni T., Gammal S.H., Fales H.M., Jones E.A., and Skolnick, P. (1990). Brain concentrations of benzodiazepines are elevated in an animal model of hepatic encephalopathy. Proc. Natl. Acad. Sci. USA 87:5263–5267.PubMedGoogle Scholar
  6. Basile A.S. (1991). The contribution of endogenous benzodiazepine receptor ligands to the pathogenesis of hepatic encephalopathy. Synapse 7:141–150.PubMedGoogle Scholar
  7. Basile A.S., Hughes R.D., Harrison P.M., Murata Y., Pannell L., Jones E.A. et al. (1991a). Elevated brain concentrations of 1,4-benzodiazepines in fulminant hepatic failure. N. Engl. J. Med. 325:473–478.Google Scholar
  8. Basile A.S., Jones E.A., and Skolnick P. (1991b). The pathogenesis and treatment of hepatic encephalopathy. Evidence for the involvement of benzodiazepine receptor ligands. Pharmacol. Rev. 43:27–71.PubMedGoogle Scholar
  9. Basile A.S. and Jones E.A. (1994). The involvement of benzodiazepine receptor ligands in hepatic encephalopahy. Hepatology 20:541–542.CrossRefPubMedGoogle Scholar
  10. Basile A.S. and Jones E.A. (1997). Ammonia and GABAergic neurotransmission: Interrelated factors in the pathogenesis of hepatic encephalopathy. Hepatology 25:103–105.CrossRefPubMedGoogle Scholar
  11. Bassett M.L., Mullen K.D., Skolnick P., and Jones E.A. (1987). Amelioration of hepatic encephalopathy by pharmacologic antagonism of the GABAA/benzodiazepine receptor complex in a rabbit model of fulminant hepatic failure. Gastroenterology 93:1069–1077.PubMedGoogle Scholar
  12. Bitran D., Hilvers R.J., and Kellogg C.K. (1991). Anxiolytic effects of 3a-Hydroxy-5a[ß]pregnan-20-one — endogenous metabolites of progesterone that are active at the GABAA receptor. Brain Res. 561:157–161.CrossRefPubMedGoogle Scholar
  13. Bosman D.K., van den Buijs C.A.C.G., de Haan J.G., Maas M.A.W., and Chamuleau R.A.F.M. (1991). The effects of benzodiazepine-receptor antagonists and partial inverse agonists on acute hepatic encephalopathy in the rat. Gastroenterology 101:772–781.PubMedGoogle Scholar
  14. Butterworth R.F., Lavoie J., Giguere J.F., and Pomier-Layrargues G. (1988). Affinities and densities of high-affinity 3H-muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. Hepatology 8:1084–1088.PubMedGoogle Scholar
  15. Butterworth R.F. (1996). Neuroactive amino acids in hepatic encephalopathy. Metab. Brain Dis. 11:165–173.PubMedGoogle Scholar
  16. Conn H.O. (1988). The hepatic encephalopathies. In (H.O. Conn, and J. Bircher, eds.) Hepatic Encephalopathy: Management with Lactulose and Related Carbohydrates. Medi-Ed Press, East Lansing, Michigan, pp. 3–14.Google Scholar
  17. Costa E. (1991). The allosteric modulation of GABA-A receptors. Seventeen years of research. Neuropsychopharmacology 4:225–235.PubMedGoogle Scholar
  18. Ferenci P., Grimm G., Meryn S., and Gangl A. (1989). Successful long-term treatment of portal systemic encephalopathy by the benzodiazepine antagonist flumazenil. Gastroenterology 96:240–243.PubMedGoogle Scholar
  19. Gammal S.H., Basile A.S., Geller D., Skolnick P., and Jones E.A. (1990). Reversal of the behavioral and electrophysiological abnormalities of an animal model of hepatic encephalopathy by benzodiazepine receptor ligands. Hepatology 11:371–378.PubMedGoogle Scholar
  20. Gooday R., Hayes P.C., Bzeizi K., and O'Carroll R.E. (1995). Benzodiazepine receptor antagonism improves reaction time in latent hepatic encephalopathy. Psychopharmacology 119:295–298.PubMedGoogle Scholar
  21. Groeneweg M., Gyr K., Amrein R., Scollo-Lavizzari G., Williams R., Yoo J.Y., and Schalm, S. W. (1996). Effect of flumazenil on the electroencephalogram of patients with portosystemic encephalopathy. Results of a double blind, randomised, placebo-controlled multicentre trial. Electroencephalogr. Clin. Neurophysiol. 98:29–34.CrossRefPubMedGoogle Scholar
  22. Gyr K., Meier R., Haussler J., Bouletreau P., Fleig W.E., Gatta A. et al. (1996). Evaluation of the efficacy and safety of flumazenil in the treatment of portal systemic encephalopathy: A double blind, randomised, placebo controlled multicentre study. Gut 39:319–324.PubMedGoogle Scholar
  23. Ha J.H. and Basile A.S. (1996). Modulation of ligand binding to components of the GABA-A receptor complex by ammonia: Implications for the pathogenesis of hyperammonemic syndromes. Brain Res. 720:35–44.CrossRefPubMedGoogle Scholar
  24. Haefely W.E. (1990). The GABAA-benzodiazepine receptor: Biology and pharmacology. Neurobiol. Anx. 3:165–188.Google Scholar
  25. Jones D.B., Mullen K.D., Rössle M., and Jones E.A. (1987). Hepatic encephalopathy: Application of visual evoked responses to test hypotheses of its pathogenesis in rats. J. Hepatol. 4:118–126.PubMedGoogle Scholar
  26. Jones E.A. (1991). Benzodiazepine receptor ligands and hepatic encephalopathy: Further unfolding of the GABA story. Hepatology 14:1286–1290.CrossRefPubMedGoogle Scholar
  27. Jones E.A. and Weissenborn K. (1997). Neurology and the liver. J. Neurol. Neurosurg. Psychiatr. 63:279–293.PubMedGoogle Scholar
  28. Maddison J.E., Yau D., Steward P., and Farrell G.C. (1986). Cerebrospinal fluid gamma-aminobutyric acid level in dogs with chronic portosystemic encephalopathy. Clin. Sci. 71:749–753.PubMedGoogle Scholar
  29. Maddison J.E., Dodd P.R., Johnston G.A., and Farrell G.C. (1987a). Brain gamma-aminobutyric acid receptor binding is normal in rats with thioacetamide-induced hepatic encephalopathy despite elevated plasma gamma-aminobutyric acid-like activity. Gastroenterology 93:1062–1068.PubMedGoogle Scholar
  30. Maddison J.E., Dodd P.R., Morrison M., Johnston G.A.R., and Farrell G.C. (1987b). Plasma GABA, GABA-like activity and the brain GABA-benzodiazepine receptor complex in rats with chronic hepatic encephalopathy. Hepatology 7:621–628.PubMedGoogle Scholar
  31. Maddison J.E., Watson W.E.J., and Johnston G.A.R. (1995). L-glutamate and gamma-aminobutyric acid uptake in synaptosomes from the cerebral cortex of dogs with congenital chronic hepatic encephalopathy. Metab. Brain Dis. 10:135–141.PubMedGoogle Scholar
  32. McArdle P., Penning D.H., Dexter F., and Reynolds J.D. (1996). Flumazenil does not affect the increase in rat hippocampal extracellular glutamate concentration produced during thioacetamide-induced hepatic encephalopathy. Metab. Brain Dis. 11:329–342.PubMedGoogle Scholar
  33. Meyer H.P., Legemate D.A., How K.L., van den Brom W.E., Voorhout G., Chamuleau R.A.F.M. et al. (1998). End-to-side portocaval anastomosis and partial hepatectomy in the dog as a model for chronic hepatic encephalopathy. J. Hepatol. 1998 (submitted)Google Scholar
  34. Michalak A., Rose C., Butterworth J., and Butterworth R.F. (1996). Neuroactive amino acids and glutamate (NMDA) receptors in frontal cortex of rats with experimental acute liver failure. Hepatology 24:908–913.CrossRefPubMedGoogle Scholar
  35. Mullen K.D., Martin J.V., Mendelson W.B., Kaminsky-Russ K., and Jones E.A. (1989). Evidence for the presence of a benzodiazepine receptor binding substance in cerebrospinal fluid of a rabbit model of hepatic encephalopathy. Metab. Brain Dis. 4:253–260.PubMedGoogle Scholar
  36. Mullen K.D., Szauter K.M., and Kaminsky-Russ K. (1990). “Endogenous” benzodiazepine activity in body fluids of patients with hepatic encephalopathy. Lancet 336:81–83.CrossRefPubMedGoogle Scholar
  37. Norenberg M.D. (1996). Astrocyte-ammonia interactions in hepatic encephalopathy. Semin. Liver Dis. 16:245–253.PubMedGoogle Scholar
  38. Polc P. (1995). Involvement of endogenous benzodiazepine receptor ligands in brain disorders: Therapeutic potential for benzodiazepine antagonists? Med. Hypoth. 44:439–446.CrossRefGoogle Scholar
  39. Pomier Layrargues G., Giguere J.F., Lavoie J., Perney P., Gagnon S., Damour M. et al. (1994). Flumazenil in cirrhotic patients in hepatic coma: A randomized double-blind placebo-controlled crossover trial. Hepatology 19:32–37.CrossRefPubMedGoogle Scholar
  40. Popken R.J., Kropveld D., Oosting J., and Chamuleau R.A. (1983). Quantitative analysis of EEG power spectra in experimental hepatic encephalopathy. Neuropsychobiology 9:235–243.PubMedGoogle Scholar
  41. Rothuizen J., de Kok Y., Slob A., and Mol J.A. (1996). GABAergic inhibition of the pituitary release of adrenocorticotropin and α-melanotropin is impaired in dogs with hepatic encephalopathy. Domest. Anim. Endocrinol. 13:59–68.CrossRefPubMedGoogle Scholar
  42. Roy S., Pomier Layrargues G., Butterworth R.F., and Huet P.M. (1988). Hepatic encephalopathy in cirrhotic and portacaval shunted dogs: Lack of changes in brain GABA uptake, brain GABA levels, brain glutamic acid decarboxylase activity and brain postsynaptic GABA receptors. Hepatology 8:845–849.PubMedGoogle Scholar
  43. Schafer D.F., and Jones E.A. (1982). Hepatic encephalopathy and the gamma-aminobutyric acid neurotransmitter system. Lancet i:18–20.CrossRefGoogle Scholar
  44. Schafer D.F., Pappas S.C., Brody L.E., Jacobs R., and Jones E.A. (1984). Visual evoked potentials in a rabbit model of hepatic encephalopathy. I. Sequential changes and comparisons with drug-induced comas. Gastroenterology 86:540–545.PubMedGoogle Scholar
  45. Steindl P., Püspök A., Druml W., and Ferenci P. (1991). Beneficial effect of pharmacological modulation of the GABAA-benzodiazepine receptor on hepatic encephalopathy in the rat: Comparison with uremic encephalopathy. Hepatology 4:963–968.CrossRefGoogle Scholar
  46. Teschemacher A., Kasparov S., Kravitz E.A., and Rahamimoff R. (1997). Presynaptic action of the neurosteroid pregnenolone sulfate on inhibitory transmitter release in cultured hippocampal neurons. Brain Res. 772:226–232.CrossRefPubMedGoogle Scholar
  47. van der Rijt C.C.D., and Schalm S.W. (1992). Quantitative EEG analysis and evoked potentials to measure (latent) hepatic encephalopathy. J. Hepatol. 14:141–142.PubMedGoogle Scholar
  48. van der Rijt C.C.D., Schalm S.W., Meulstee J., and Stijnen T. (1995). Flumazenil therapy for hepatic encephalopathy. A double-blind cross over study. Gastroenterol. Clin. Biol. 19:572–580.PubMedGoogle Scholar
  49. Widler P., Fisch H.U., Schoch P., Zimmermann A., Schlapfer T.E., and Reichen J. (1993). Increased benzodiazepine-like activity is neither necessary nor sufficient to explain acute hepatic encephalopathy in the thioacetamide-treated rat. Hepatology 18:1459–1464.CrossRefPubMedGoogle Scholar
  50. Wieland H.A., and Luddens H. (1994). Four amino acid exchanges convert a diazepam-insensitive, inverse agonist-preferring GABAA receptor into a diazepam-preferring GABAA receptor. J. Med. Chem. 37:4576–4580.PubMedGoogle Scholar
  51. Wildmann J., Moehler H., Vetter W., Ranalder U., Schmidt K., and Maurer R. (1987). Diazepam and N-desmethyldiazepam are found in rat brain and adrenal and may be of plant origin. J. Neural Transm. 70:383–398.PubMedGoogle Scholar
  52. Yurdaydin C., Gu Z.Q., Nowak G., Fromm C., Holt A.G., and Basile A.S. (1993). Benzodiazepine receptor ligands are elevated in an animal model of hepatic encephalopathy: Relationship between brain concentration and severity of encephalopathy. J. Pharmacol. Exp. Ther. 265:565–571.PubMedGoogle Scholar
  53. Yurdaydin C., Walsh T.J., Engler H.D., Ha J.H., Li Y., Jones E.A., and Basile A.S. (1995). Gut bacteria provide precursors of benzodiazepine receptor ligands in a rat model of hepatic encephalopathy. Brain Res. 679:42–48.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Hein P. Meyer
    • 1
  • Dink A. Legemate
    • 2
  • Walter van den Brom
    • 1
  • Jan Rothuizen
    • 1
  1. 1.Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
  2. 2.Department of Surgery, Academical Medical CentreUniversity of Amsterdamthe Netherlands

Personalised recommendations