Skip to main content
Log in

The Cox-2-Specific Inhibitor Celecoxib Inhibits Adenylyl Cyclase

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Nonsteroidal anti-inflammatory drugs (NSAIDs) are well-known causes of acute renal insufficiency and gastropathy in patients with chronic inflammatory diseases. This action is presumed to result from nonselective inhibition of both constitutive and inducible forms of prostaglandin H synthases, also known as the cyclooxygenase enzymes (i.e., COX-1 amd COX-2). Celecoxib (Celebrex®) is a COX-2 enzyme inhibitor and has emerged as a preferred therapeutic agent for the treatment of rheumatoid arthritis as compared to other NSAIDs. Celecoxib has recently been the subject of criticism for its side effects, mainly arterial thrombosis and renal hemorrhage, although it is considered a superior drug in protecting the gastrointestinal tract. In the present study, we report that celecoxib not only inhibited COX-2, but also exhibited the property of inhibiting adenylyl cyclase, an important enzyme forming the intracellular second messenger 3′,5′-adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). Celecoxib also inhibited cholera toxin-stimulated cAMP formation, which indicated its ability to permeate cell membranes in order to reach intracellular adenylyl cyclase. It inhibited in vitro adenylyl cyclase activity in both human colonic epithelial cells and purified adenylyl cyclase from Bordetella pertussis. The IC50 of celecoxib for B. pertussis adenylyl cyclase was calculated to be 0.375 mM. Lineweaver–Burk analysis showed that the type of enzyme inhibition was competitive. The apparent K m and V max of adenylyl cyclase was calculated as 25.0 nM and 7.14 nmol/min/mg, respectively. Celecoxib changed the K m value to 66.6 nM without affecting the V max. The current study suggests that apart from inflammation, celecoxib therapy could be further extended to diseases involving cAMP upregulation either by endogenous reactions or exogenous agents. These new data showing inhibition of adenylyl cyclase should be considered in light of the drug's pathological effects or in patients specifically excluded from treatment (e.g., asthmatics).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garrison, J. C. and T. W. Rall. 1990. Introduction to section IV: Autacoids; drug therapy of inflammation. In: Goodman and Gilman's the Pharmacological Basis of Therapeutics, 8th ed, A. G. Gilman, T. W. Rall, A. S. Nies, and P. Taylor. (Eds.). New York: Pergamon Press, 574–575.

    Google Scholar 

  2. Moncada, S., R. M. Palmer, and E. A. Higgs. 1991. Nitric oxide: Physiology, pathophysiology, and pharmacology, Pharmacol. Rev. 43: 109–142.

    Google Scholar 

  3. Davies, P. and D. E. MacIntyre. 1992. Prostaglandins and inflammation. In: Inflammation: Basic Principles and Clinical Correlates. Gallin, J. I., I. M. Goldstein, and R. Snyderman, (Eds.). NY: Raven, 123–137.

    Google Scholar 

  4. Williams, T. J. and J. Morley. 1973. Prostaglandins as potentiators of increased vascular permeability in inflammation. Nature 246: 215–217.

    Google Scholar 

  5. Williams, T. J. 1979. Prostaglandin E2, prostaglandin I2 and the vascular changes of inflammation. Br. J. Pharmacol. 65:517–524.

    Google Scholar 

  6. Ferreira, S. H. 1972. Prostaglandins, aspirin-like drugs and analgesia. Nat. New Biol. 240:200–203.

    Google Scholar 

  7. Ferreira, S. H., M. Nakamura, and M. S. de Abreu Castro. 1978. The hyperalgesic effects of prostacyclin and prostaglandin E2. Prostaglandins 16:31–37.

    Google Scholar 

  8. Davies, P., P. J. Bailey, M. M. Goldenberg, and A. W. Ford-Hutchinson. 1984. The role of arachidonic acid oxygenation products in pain and inflammation. Annu. Rev. Immunol. 2:335–357.

    Google Scholar 

  9. O'Neill, G. and A. W. Ford-Hutchinson. 1993. Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett. 330:156–160.

    Google Scholar 

  10. Fu, J. Y., J. L. Masferrer, K. Seibert, A. Raz, and P. Needleman. 1990. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J. Biol. Chem. 265:16737–16740.

    Google Scholar 

  11. Gierse, J. K., S. D. Hauser, D. P. Creely, C. Koboldt, S. H. Rangwala, P. C. Isakson, and K. Seibert. 1995. Expression and selective inhibition of the constitutive and inducible forms of human cyclooxygenase. Biochem. J. 305:479–484.

    Google Scholar 

  12. Khan, K. N., J. L. Masferrer, B. M. Woerner, R. Soslow, and A. T. Koki. 2001. Enhanced cyclooxygenase-2 expression in sporadic and familial adenomatous polyposis of the human colon. Scand. J. Gastroenterol. 36:865–869.

    Google Scholar 

  13. Dubois, R. N. 2000. Cyclooxygenase—A target for colon cancer prevention [Review]. Aliment. Pharmacol. Ther. 14(Suppl. 1): 64–67.

    Google Scholar 

  14. Leahy, K. M., R. L. Ornberg, Y. Wang, B. S. Zweifel, A. T. Koki, and J. L. Masferrer. 2002. Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer Res. 62:625–631.

    Google Scholar 

  15. Insel, P. Analgesic antipyretics and anti-inflammatory agents: Drugs employed in the treatment of rheumatoid arthritis and gout. In: Goodman and Gilman's the Pharmacological Basis of Therapeutics, 8th ed, A. G. Gilman, T. W. Rall, A. S. Nies, P. Taylor, (Eds.). New York: Pergamon Press, 638–681.

  16. Tysk, C. 2000. Drug-induced enterocolitis. Important differential diagnosis in the investigation of diarrhea and intestinal hemorrhage. Lakartidningen 97:2606–2610.

    Google Scholar 

  17. Hawkey, C. J., L. Jackson, S. E. Harper, T. J. Simon, E. Mortensen, and C. R. Lines. 2001. The gastrointestinal safety profile of rofecoxib, a highly selective inhibitor of cyclooxygenase-2, in humans [Review]. Aliment. Pharmacol. Ther. 15:1–9.

    Google Scholar 

  18. FitzGerald, G. A. and C. Patrono. 2001. The coxibs, selective inhibitors of cyclooxygenase-2 [Review]. N. Eng. J. Med. 345:433–442.

    Google Scholar 

  19. Bjarnason, I. and K. D. Rainsford. 2001. Are cyclooxygenase 2 inhibitors free of gastrointestinal side effects? [Review]. Western J. Med. 175:267–268.

    Google Scholar 

  20. Silverstein, F. E., G. Faich, J. L. Goldstein, L. S. Simon, T. Pincus, A. Whelton, R. Makuch, G. Eisen, N. M. Agrawal, W. F. Stenson, A. M. Burr, W. W. Zhao, J. D. Kent, J. B. Lefkowith, K. M. Verburg, and G. S. Geis. 2000. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: The CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study [Multicenter Study. Randomized Controlled Trial]. JAMA 284:1247–1255.

    Google Scholar 

  21. Crofford, L. J., J. C. Oates, W. J. McCune, S. Gupta, M. J. Kaplan, F. Catella-Lawson, J. D. Morrow, K. T. McDonagh, and A. H. Schmaier. 2000. Thrombosis in patients with connective tissue diseases treated with specific cyclooxygenase 2 inhibitors. A report of four cases. Arthritis Rheum. 43:1891–1896.

    Google Scholar 

  22. Perazella, M. A. and J. Eras. 2000. Are selective COX-2 inhibitors nephrotoxic? American J. Kidney Dis. 35: 937–940.

    Google Scholar 

  23. Alcantara, C., W. F. Stenson, T. S. Steiner, and R. L. Guerrant. 2001. Role of inducible cyclooxygenase and prostaglandins in Clostridium difficile toxin A-induced secretion and inflammation in an animal model. J. Infect. Dis. 184:648–652.

    Google Scholar 

  24. Peterson, J. W., S. S. Saini, and D. L. Gessell-Lee. 2002. PGE2L-histidine is a potent inhibitor of adenylyl cyclase that reduces the secretory response of cholera. Digestive Disease Week Meeting, San Francisco. Abstract W935.

  25. Kimberg, D. V., M. Field, E. Gershon, and A. Henderson. 1974. Effects of prostaglandins and cholera enterotoxin on intestinal mucosal cyclic AMP accumulation. Evidence against an essential role for prostaglandins in the action of toxin. J. Clin. Invest. 53:941–949

    Google Scholar 

  26. Sharp, G. W. and S. Hynie. 1971. Stimulation of intestinal adenyl cyclase by cholera toxin. Nature 229:266–269.

    Google Scholar 

  27. Schafer, D. E., W. D. Lust, B. Sircar, and N. D. Goldberg. 1970. Elevated concentration of adenosine 3′:5′-cyclic monophosphate in intestinal mucosa after treatment with cholera toxin. Proc. Natl. Acad. Sci. U.S.A. 67:851–856.

    Google Scholar 

  28. Flores, J. and G. W. Sharp. 1975. Effects of cholera toxin on adenylyl cyclase. Studies with guanylylimidodiphosphate. J. Clin. Invest. 56:1345–1349.

    Google Scholar 

  29. Peterson, J. W. and L. G. Ochoa. 1989. Role of prostaglandins and cAMP in the secretory effects of cholera toxin. Science 245:857–859.

    Google Scholar 

  30. Miyamoto, T., N. Ogino, S. Yamamoto, and O. Hayaishi 1976. Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. J. Biol. Chem. 251:2629–2636.

    Google Scholar 

  31. Bailey, J. M., R. W. Bryant, S. J. Feinmark, and A. N. Makheja. 1977. Differential separation of thromboxanes from prostaglandins by one and two-dimensional thin layer chromatography. Prostaglandins 13:479–492.

    Google Scholar 

  32. Roberson, G. M. and L. D. Barnes. 1978. Separation of cyclic AMP and cyclic GMP from thymidine, electrolytes and polyvalent nucleotides in tissue samples. Biochim. Biophys Acta 544:20–28.

    Google Scholar 

  33. Johnson, R. A., R. Alvarez, and Y. Salomon. 1994. Determination of adenylyl cyclase catalytic activity using single and double column procedures. Methods Enzymol. 238:31–56.

    Google Scholar 

  34. Dessauer, C. W., J. J. Tesmer, S. R. Sprang, and A. G. Gilman. 1998. Identification of a Gialpha binding site on type V adenylyl cyclase. J. Biol. Chem. 273:25831–25839.

    Google Scholar 

  35. Dessauer, C. W. 2002. Kinetic analysis of the action of P-site analogs. Methods Enzymol. 345:112–126.

    Google Scholar 

  36. Smith, C. J., Y. Zhang, C. M. Koboldt, J. Muhammad, B. S. Zweifel, A. Shaffer, J. J. Talley, J. L. Masferrer, K. Seibert, and P. C. Isakson. 1998. Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc. Natl. Acad. Sci. U.S.A. 95:13313–13318.

    Google Scholar 

  37. Aabakken, L. 1992. NSAID-associated gastrointestinal damage: Methodological considerations and a review of the experience with enteric coated naproxen [Review]. Eur. J. Rheumatol Inflamm. 12:9–20.

    Google Scholar 

  38. Schoenfeld, P., M. B. Kimmey, J. Scheiman, D. Bjorkman, and L. Laine. 1999. Nonsteroidal anti-inflammatory drug-associated gastrointestinal complications—Guidelines for prevention and treatment [Review]. Aliment. Pharmacol. Ther. 13:1273–1285.

    Google Scholar 

  39. Lichtenberger, L. M. 2001. Where is the evidence that cyclooxygenase inhibition is the primary cause of nonsteroidal anti-inflammatory drug (NSAID)-induced gastrointestinal injury. Topical injury revisited. Biochem. Pharmacol. 61:631–637.

    Google Scholar 

  40. Aabakken, L. 2001. Celecoxib as adjunctive therapy for treatment of colorectal cancer. Ann. Pharmacother. 35:1638–1643.

    Google Scholar 

  41. Masferrer, J. 2001. Approach to angiogenesis inhibition based on cyclooxygenase-2. Cancer J. 3(Suppl.):S144-S150.

    Google Scholar 

  42. Ota, S., Y. Tanaka, H. Bamba, A. Kato, and F. Matsuzaki. 1999. Nonsteroidal anti-inflammatory drugs may prevent colon cancer through suppression of hepatocyte growth factor expression. Eur. J. Pharmacol. 367:131–138.

    Google Scholar 

  43. Segel, I. H. 1976. Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry, 2nd edn. Wiley, New York.

    Google Scholar 

  44. Riendeau, D., M. D. Percival, C. Brideau, S. Charleson, D. Dube, D. Ethier, J. P. Falgueyret, R. W. Friesen, R. Gordon, G. Greig, J. Guay, J. Mancini, M. Ouellet, E. Wong, L. Xu, S. Boyce, D. Visco, Y. Girard, P. Prasit, R. Zamboni, I. W. Rodger, M. Gresser, A. W. Ford-Hutchinson, R. N. Young, and C. C. Chan. 2001. Etoricoxib (MK-0663): Preclinical profile and comparison with other agents that selectively inhibit cyclooxygenase-2. J. Pharmacol. Exp. Ther. 296:558–566.

    Google Scholar 

  45. Tesmer, J. J. G., R. K. Sunahara, R. A. Johnson, G. Gosselin, A. G. Gilman, and S. R. Sprang. 1999. Two-metal-ion catalysis in adenylyl cyclase. Science 285:756–760.

    Google Scholar 

  46. Antoni, F. A. 2000. Molecular diversity of cyclic AMP signalling. Front. Neuroendocrinol. 21:103–132.

    Google Scholar 

  47. Chern, Y. 2000. Regulation of adenylyl cyclase in the central nervous system. Cell Signal. 12:195–204.

    Google Scholar 

  48. Schramm, M. and Z. Selinger. 1984. Message transmission: Receptor controlled adenylyl cyclase system. Science 225:1350–1356.

    Google Scholar 

  49. Lauder, J. M. 1993. Neurotransmitters as growth regulatory signals: Role of receptors and second messengers. Trends Neurosci. 16:233–240.

    Google Scholar 

  50. Skålhegg, B. S. and K. Tasken. 2000. Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front. Biosci. 5: d678-d693.

    Google Scholar 

  51. Chen, C. C., K. T. Chiu, Y. T. Sun, and W. C. Chen. 1999. Role of the cyclic AMP-protein kinase A pathway in lipopolysaccharide-induced nitric oxide synthase expression in RAW 264.7 macrophages. Involvement of cyclooxygenase-2. J. Biol. Chem. 274: 31559–31564.

    Google Scholar 

  52. Moore A. R. and D. A. Willoughby. 1995. The role of cAMP regulation in controlling inflammation [Review]. Clin. Exp. Immunol. 101:387–389.

    Google Scholar 

  53. Duebbert, I. E. and J. W. Peterson. 1985. Enterotoxin-induced fluid accumulation during experimental salmonellosis and cholera: Involvement of prostaglandin synthesis by intestinal cells. Toxicon 23:157–72.

    Google Scholar 

  54. Lin, W. W., S. H. Chang, and S. M. Wang. 1999. Roles of atypical protein kinase C in lysophosphatidic acid-induced type II adenylyl cyclase activation in RAW 264.7 macrophages. Br. J. Pharmacol. 128:1189–1198.

    Google Scholar 

  55. Hanski, E. (1989). Invasive adenylyl cyclase toxin of Bordetella pertussis. Trends Biochem. Sci. 14:459–446.

    Google Scholar 

  56. Archipoff, G., A. Beretz, K. Bartha, C. Brisson, C. de la Salle, C. Froget-Leon, C. Klein-Soyer, and J. P. Cazenave. 1993. Role of cyclic AMP in promoting the thromboresistance of human endothelial cells by enhancing thrombomodulin and decreasing tissue factor activities. Br. J. Pharmacol. 109:18–28.

    Google Scholar 

  57. Schwarz, U. R., U. Walter, and M. Eigenthaler. 2001. Taming platelets with cyclic nucleotides [Review]. Biochem. Pharmacol. 62:1153–1161.

    Google Scholar 

  58. Paulson, S. K., J. D. Hribar, N. W. K. Liu, E. Hajdu, R. H. Bible, A. Piergies, and A. Karim. 2000. Metabolism and excretion of [14C] celecoxib in healthy male volunteers. Drug Metab. Dispos. 28:308–314.

    Google Scholar 

  59. Paulson, S. K., J. Y. Zhang, A. P. Breau, J. D. Hribar, N. W. K. Liu, S. M. Jessen, Y. M. Lawal, J. N. Cogburn, C. J. Gresk, C. S. Markos, T. J. Maziasz, G. L. Schoenhard, and E. G. Burton. 2000. Pharmacokinetics, tissue distribution, metabolism, and excretion of celecoxib in rats. Drug Metab. Dispos. 28:514–521.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny W. Peterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saini, S.S., Gessell-Lee, D.L. & Peterson, J.W. The Cox-2-Specific Inhibitor Celecoxib Inhibits Adenylyl Cyclase. Inflammation 27, 79–88 (2003). https://doi.org/10.1023/A:1023226616526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023226616526

Navigation