Skip to main content
Log in

Featured Article: Use of Microhotplates in the Controlled Growth and Characterization of Metal Oxides for Chemical Sensing

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Microhotplates are micromachined platforms with integrated heaters and contact electrodes that can be used as miniature substrates for metal oxide film growth. Fabricated as arrays, they enable efficient combinatorial studies to be performed on a single chip. A variety of growth methods are compatible with their use, including evaporation, sputtering, chemical vapor deposition, and deposition from pastes or sol gels using screen printing, drop deposition, or spin-coating. The microheater on each element may be used to control the temperature during deposition or for a post-annealing step such as sintering, while the film contact electrodes serve as a built-in monitor of the fabrication process. In chemical vapor deposition using arrays, the elements with heaters set above the lowest nucleation temperature for a given precursor are the only ones that will have film deposited on them, resulting in a kind of self-lithography. This review gives examples of different methods of film growth that have been employed on microhotplates with applications for chemical sensing, with an emphasis on the chemical vapor deposition method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Demarne and A. Grisel, Sensors and Actuators, 13, 301 (1988).

    Google Scholar 

  2. U. Dibbern, Sensors and Actuators B-Chemical, 2, 63 (1990).

    Google Scholar 

  3. J. Suehle, R. Cavicchi, M. Gaitan, and S. Semancik, IEEE Electron Device Lett., 14, 118 (1993).

    Google Scholar 

  4. N.R. Swart and A. Nathan, Sensors and Actuators a-Physical, 43, 3 (1994).

    Google Scholar 

  5. W.Y. Chung, C.H. Shim, S.D. Choi, and D.D. Lee, Sensors and Actuators B-Chemical, 20, 139 (1994).

    Google Scholar 

  6. H.E. Endres, W. Gottler, R. Hartinger, S. Drost, W. Hellmich, G. Muller, C. BoschvonBraunmuhl, A. Krenkow, C. Perego, and G. Sberveglieri, Sensors and Actuators B-Chemical, 36, 353 (1996).

    Google Scholar 

  7. B. Panchapakesan, D. DeVoe, R.E. Cavicchi, and S. Semancik, Mat. Res. Soc. Symp. Proc., 574, 213 (2000).

    Google Scholar 

  8. C. Cane, I. Gracia, A. Gotz, L. Fonseca, E. Lora-Tamayo, M.C. Horrillo, I. Sayago, J.I. Robla, J. Rodrigo, and J. Gutierrez, Sensors and Actuators B-Chemical, 65, 244 (2000).

    Google Scholar 

  9. S. Capone, P. Siciliano, N. Barsan, U. Weimar, and L. Vasanelli, Sensors and Actuators B-Chemical, 78, 40 (2001).

    Google Scholar 

  10. Y.W. Mo, Y. Okawa, M. Tajima, T. Nakai, N. Yoshiike, and K. Natukawa, Sensors and Actuators B-Chemical, 79, 175 (2001).

    Google Scholar 

  11. R.E. Cavicchi, J.S. Suehle, K.G. Kreider, M. Gaitan, and P. Chaparala, IEEE Electron Device Lett., 16, 286 (1995).

    Google Scholar 

  12. A. Heilig, N. Barsan, U. Weimar, M. Schweizer-Berberich, J.W. Gardner, and W. Gopel, Sensors and Actuators B-Chemical, 43, 45 (1997).

    Google Scholar 

  13. D. Barrettino, M. Graf, M.M. Zimmermann, A. Hierlemann, H. Baltes, S. Hahn, N. Barsan, and U. Weimar, in IEEE International Symposium on Circuits and Systems (ISCAS), 2002. (Institute of Electrical and Electronics Engineers Inc., Phoenix, AZ, 2002), vol. 2, p. 157.

    Google Scholar 

  14. A.R. Hefner, D.W. Berning, M.E. Zaghloul, J.S. Suehle, M Afridi, R.E. Cavicchi, and S. Semancik, in IEEE International Symposium on Circuits and Systems (ISCAS), 2002. (Institute of Electrical and Electronics Engineers Inc., Phoenix, AZ, 2002), vol. 2, p. 732.

    Google Scholar 

  15. R.E. Cavicchi, J.S. Suehle, K.G. Kreider, J.A. Small, M. Gaitan, and P. Chaparala, Appl. Phys. Lett., 66, 812 (1995).

    Google Scholar 

  16. S. Semancik and R.E. Cavicchi, Acc. Chem. Res., 31, 279 (1998).

    Google Scholar 

  17. H.L. Tuller and R. Mlcak, Journal of Electroceramics, 4, 415 (2000).

    Google Scholar 

  18. T. Simon, N. Barsan, M. Bauer, and U. Weimar, Sensors and Actuators B-Chemical, 73, 1 (2001).

    Google Scholar 

  19. R.E. Cavicchi, S. Semancik, R.M. Walton, B. Panchapakesan, D.L. DeVoe, M.I. Aquino-Class, J.D. Allen, and J.S. Suehle, in Chemical Microsensors and Applications II, edited by S. Buettgenbach (SPIE-The International Society for Optical Engineering, Boston, MA, 1999), vol. Proc. SPIE 3857, p. 38. 164 Cavicchi et al.

    Google Scholar 

  20. J.C. Marshall, M. Parameswaran, M.E. Zaghloul, and M. Gaitan, IEEE Circuits and Devices, 8, 10 (1992).

    Google Scholar 

  21. I. Gracia, J. Santander, C. Cane, M.C. Horrillo, I. Sayago, and J. Gutierrez, Sensors and Actuators B-Chemical, 77, 409 (2001). Figure 3 reprinted with permission from Elsevier Science

    Google Scholar 

  22. J.F. McAleer, P.T. Moseley, J.O.W. Norris, and D.E. Williams, J. Chem. Soc. Faraday Trans., 83, 1323 (1987).

    Google Scholar 

  23. D. Kohl, Sensors and Actuators, 18, 71 (1989).

    Google Scholar 

  24. N. Yamazoe, in 3rd International Meeting on Chemical Sensors (Cleveland, 1990), p. 3.

  25. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sensors and Actuators B, 3, 147 (1991).

    Google Scholar 

  26. A. Balasubramanian, Solid State Phenomena, 55, 54 (1997).

    Google Scholar 

  27. N. Taguchi, United Kingdom Patent Specification 1280809.

  28. G. Martinelli and M.C. Carotta, Sensors and Actuators B-Chemical, 23, 157 (1995).

    Google Scholar 

  29. P.T. Moseley and D.E. Williams, in Adam Hilger Series on Sensors, edited by P.T. Moseley (IOP Publishing Ltd, Bristol, England, 1991), p. 46.

    Google Scholar 

  30. J. Janata, Principles of Chemical Sensors (Plenum Press, NY, 1992).

    Google Scholar 

  31. P. Fau, M. Sauvan, S. Trautweiler, C. Nayral, L. Erades, A. Maisonnat, and B. Chaudret, Sensors and Actuators B-Chemical, 78, 83 (2001). Figure 4 reprinted with permission from Elsevier Science

    Google Scholar 

  32. C. Nayral, T. Ould-Ely, A. Maisonnat, B. Chaudret, P. Fau, L. Lescouzeres, and A. Peyre-Lavigne, Advanced Materials, 11, 61 (1999).

    Google Scholar 

  33. J. Puigcorbe, A. Vila, J. Cerda, A. Cirera, I. Gracia, C. Cane, and J.R. Morante, Sensors and Actuators a-Physical, 97/98, 379 (2002).

    Google Scholar 

  34. P.P. Tsai, I.C. Chen, and C.J. Ho, Sensors and Actuators Bchemical, 76, 380 (2001). Figure 5 reprinted with permission from Elsevier Science.

    Google Scholar 

  35. D. incenzi, M.A. Butturi, V. Guidi, M.C. Carotta, G. Martinelli, V. Guarnieri, S. Brida, B. Margesin, F. Giacomozzi, M. Zen, D. Giusti, G. Soncini, A.A. Vasiliev, and A.V. Pisliakov, Journal of Vacuum Science &; Technology B, 18, 2441 (2000).

    Google Scholar 

  36. R.E. Cavicchi, R.M. Walton, J.D. Allen, M. Aquino-Class, and B. Panchapakesan, Sensors and Actuators B: Chemical, 77, 145 (2001).

    Google Scholar 

  37. L.Y. Sheng, Z.N. Tang, J. Wu, P.C.H. Chan, and J.K.O. Sin, Sensors and Actuators B-Chemical, 49, 81 (1998).

    Google Scholar 

  38. P.C.H. Chan, G.Z. Yan, L.Y. Sheng, R.K. Sharma, Z. Tang, J.K.O. Sin, I.M. Hsing, and Y. Wang, Sensors and Actuators B-Chemical, 82, 277 (2002).

    Google Scholar 

  39. V. Guidi, M.A. Butturi, M.C. Carotta, B. Cavicchi, M. Ferroni, C. Malagu, G. Martinelli, D. Vincenzi, M. Sacerdoti, and M. Zen, Sensors and Actuators B-Chemical, 84, 72 (2002).

    Google Scholar 

  40. G. Sberveglieri, G. Faglia, S. Groppelli, P. Nelli, and A. Camanzi, Semiconductor Science Technology, 5, 1231 (1990).

    Google Scholar 

  41. S. Majoo, J.W. Schwank, J.L. Gland, and K.D. Wise, IEEE Electron Device Letters, 16,217 (1995).

    Google Scholar 

  42. F. Dimeo, Jr., S. Semancik, R.E. Cavicchi, J.S. Suehle, N.H. Tea, M.D. Vaudin, and J.T. Kelliher, in Proceedings of the 1996 MRS Fall Meeting (Boston, MA, 1997), vol. 444, p. 203.

    Google Scholar 

  43. F. Dimeo, Jr., S. Semancik, R.E. Cavicchi, J.S. Suehle, P. Chaparala, and N.H. Tea, in Proceedings of the 1995 MRS Fall Meeting (Boston, MA, 1996), vol. 415, p. 231.

    Google Scholar 

  44. M. Afridi, J.S. Suehle, M.E. Zaghloul, R.E. Cavicchi, and S. Semancik, in European Conference on Circuit Theory and Design, August 28–31 (Espoo, Finland, 2001).

    Google Scholar 

  45. F. DiMeo, R.E. Cavicchi, S. Semancik, J.S. Suehle, N.H. Tea, J. Small, J. Armstrong, and J.T. Kelliher, J. Vac. Sci. Technol. A, 16, 131 (1998).

    Google Scholar 

  46. C.J. Taylor and S. Semancik, Chemistry of Materials, 14, 1671 (2002).

    Google Scholar 

  47. S.A. Wight, R.E. Cavicchi, and M.J. Nystrom, Review of Scientific Instruments (submitted in 2002).

  48. F. DiMeo, Jr., R.E. Cavicchi, S. Semancik, J.S. Suehle, N.H. Tea, and J.T. Kelliher, in Proceedings of the 1996 MRS Fall Meeting (Boston, MA, 1997), vol. 441, p. 69.

    Google Scholar 

  49. B. Panchepakesan, D.L. Devoe, M. Widmaeir, R.E. Cavicchi, and S. Semancik, Nanotechnology, 12, 336 (2001).

    Google Scholar 

  50. C. Taylor and R.E. Cavicchi (unpublished).

  51. J. Tiffany, R.E. Cavicchi, and S. Semancik, in Advanced Environmental and Chemical Sensing Technology, edited by S. Butettgenbach (2000), vol. 4205, p. 240.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavicchi, R., Semancik, S., DiMeo, F. et al. Featured Article: Use of Microhotplates in the Controlled Growth and Characterization of Metal Oxides for Chemical Sensing. Journal of Electroceramics 9, 155–164 (2002). https://doi.org/10.1023/A:1023224123925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023224123925

Navigation