Skip to main content
Log in

Microstructural evaluation and phase transformation of recast layers in electrical discharge machined dual phase Fe-Mn-Al alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical discharge machining process is an effective way to machine hard alloys. A homogenized dual phase Fe-24.0%Mn-8.3%Al-5.0%Cr-0.38%Si-0.34%Mo-0.45%C (wt%) alloy casting piece was employed to study the phase transformation and microstructure phenomena of recast layers by means of electrical discharge machining. The wave-like recast layers appear with micro cracks. The thickness of the recast layer increases with pulse duration. When the pulse duration ranges from 200 to 300 μs, the discharge current has no influence on the thickness of the recast layer. The copper concentration is high in the recast layer caused by the melting of the copper electrode. The copper contents of the recast layer increase with the pulse duration and the discharge current.

The novel solidification microstructures of the recast layer can be classified as (1) a dense and fine dendritic outermost sublayer, (2) a coarse dendritic intermediate sublayer and (3) an innermost γ recast zone. The average chemical composition of the recast sublayers is Fe-19.007%Mn-8.377%Al-2.981%C-4.505%Cr-0.627%Cu-0.377%Mo-0.376%Si (wt%). The novel structure of the recast sublayer is identified as (Fe,Mn)3AlCx, which was formed due to the re-melting of the matrix and the carburization of the cracked dielectric fluid. The precise lattice parameter, a o, of the (Fe,Mn)3AlC x phase measured by extrapolation against cos2θ/sinθ is 0.3801 nm. The microhardness of the recast layers is as high as Hmv574 due to the existence of (Fe,Mn)3AlCx carbide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. C. Lim, L. C. Lee, Y. S. Wong and H. H. Lu, Mater. Sci. Technol 3(7) (1991) 239.

    Google Scholar 

  2. L. C. Lee, L. C. Lim, V. Narayanan and V. C. Venkatesh, Int. J. Mach. Tool Manufact. 28(4) (1988) 359.

    Google Scholar 

  3. R. A. Hadfield, PUS Patent 422403 (1887).

  4. J. R. Mitchell and M. E. Potter, US Patent 3201230 (1965).

  5. J. W. Lee, J. G. Duh and S. Y. Tsai, Surf. Coat. Technol. 153(1) (2002) 59.

    Google Scholar 

  6. J. G. Duh, J. W. Lee and C. J. Wang, J. Mater. Sci. 23 (1988) 2649.

    Google Scholar 

  7. J. G. Duh and J. W. Lee, J. Electrochem. Soc. 136(3) (1989) 847.

    Google Scholar 

  8. B. K. Zuidema, D. K. Subramanyam and W. C. Leslie, Metall. Trans. A 18 (1987) 1629.

    Google Scholar 

  9. J. W. Lee, in Proceedings of 16th National Conference on Mechanical Engineering (The Chinese Society of Mechanical Engineering, Taiwan, Dec. 1999) Vol. 4, p.158.

    Google Scholar 

  10. C. H. Kahng and K. P. Rajurkar, CIRP Ann. 25(1) (1977) 77.

    Google Scholar 

  11. A. G. Mamlis, G. C. Vosniakos, N. M. Vaxevandis and J. Prohszka, J. Mech. Working Technol. 15(1) (1988) 335.

    Google Scholar 

  12. K. P. Rajurkar and S. M. Pandit, J. Eng. Ind. (Trans. ASME) 106(2) (1984) 171.

    Google Scholar 

  13. L. Massarelli and M. Marchionni, Met. Technol. 4(2) (1977) 100.

    Google Scholar 

  14. J. S. Soni, Wear 177(2) (1994) 71.

    Google Scholar 

  15. J. P. Kruth, L. Stevens, L. Froyen and B. Lauwers, CIRP Ann. 44(1) (1995) 169.

    Google Scholar 

  16. C. P. Tabrett, J. Mater. Sci. Let. 15(20) (1996) 1792.

    Google Scholar 

  17. H. K. Lloyd and R. H. Warren, J. Iron Steel Inst. 203(3) (1965) 238.

    Google Scholar 

  18. J. S. Soni and G. Chakraverti, J. Mater. Proc. Technol. 56(1-4) (1996) 439.

    Google Scholar 

  19. Y. Fukuzawa, Yo Kojima, T. Tani, E. Sekiguti and N. Mohri, Mater. Manufact. Proc. 10(2) (1995) 195.

    Google Scholar 

  20. B. V. Sharov and IZV. AKAD. NAUK, SSSR Met. Topl. 3 (1959) 148.

    Google Scholar 

  21. G. F. Kosolapov and Yu. D. Tyapkin, Metalloved. Term. Obrab. Met. 41 (1955) 226.

    Google Scholar 

  22. M. A. E. R. Merdan and R. D. Arnell, Surf. Eng. 5(2) (1989) 96.

    Google Scholar 

  23. C. E. Hale and A. J. Baker, in “Alternate Alloying for Environmental Resistance,” edited by G. R. Smolik and Banerji (The Metallurgical Society of AIME, 1987) p. 67.

  24. K. Sato, K. Tagawa and Y. Inoue, Metall. Trans. A 21 (1990) 6.

    Google Scholar 

  25. P. J. James, J. Iron Steel Inst. 207 (1969) 54.

    Google Scholar 

  26. G. L. Kayak, Met. Sci. Heat Treat. 11(2) (1969) 95.

    Google Scholar 

  27. K. H. Han and W. K. Choo, Metall. Trans. A 14 (1983) 973.

    Google Scholar 

  28. W. K. Choo and K. H. Han, ibid. 16 (1985) 5.

    Google Scholar 

  29. K. H. Han and W. K. Choo, ibid. 20 (1989) 205.

    Google Scholar 

  30. C. Y. Chao, C. N. Hwang and T. F. Liu, Scripta Metall. 34(1) (1996) 75.

    Google Scholar 

  31. J. W. Lee and T. F. Liu, Mater. Chem. Phys. 69 (2001) 192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JW. Microstructural evaluation and phase transformation of recast layers in electrical discharge machined dual phase Fe-Mn-Al alloy. Journal of Materials Science 38, 1679–1687 (2003). https://doi.org/10.1023/A:1023215424025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023215424025

Keywords

Navigation