Skip to main content
Log in

Stability and Release Performance of a Series of Pegylated Copolymeric Micelles

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The aim of this work is to evaluate the capability of a series of biocompatible amphiphilic copolymers as a nano-sized drug carrier.

Methods. The influences of the type of lactone monomer, the feed molar ratios of lactone/PEG, and the molecular weight of PEG on the performance and release behavior of micelles are investigated.

Results. These pegylated amphiphilic copolymers efficiently form micelles with a low CMC value in the range of 10−6-10−7 M. The average particle size of micelles is ∼100 nm. The phenomenon of increasing particle size as increasing the chain length of poly(lactone) block is observed. The different hydrophobicity, based on chemical structure of poly(lactone), accounts for different interaction strength between indomethacin and hydrophobic inner core, which further influences the drug loading in copolymeric micelles and their release character. In addition, the PCL/PEG/PCL micellar solutions maintain their sizes at 4°C for 8 weeks without occurring significant aggregation or dissociation.

Conclusions. A series of biocompatible pegylated amphiphilic copolymers have been elucidated possessing micellization potential to form nano-sized micelles in an aqueous environment, which enable incorporate hydrophobic drug and regulate drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Liu, S. Farrell, and K. Uhrich. Drug release characteristics of unimolecular polymeric micelles. J. Control. Release 68:167-174 (2000).

    Google Scholar 

  2. V. P. Torchilin. Polymer-coated long-circulating microparticulate pharmaceuticals. J. Microencap. 15:1-19 (1998).

    Google Scholar 

  3. K. Kataoka, G. S. Kwon, M. Yokayama, T. Okano, and Y. Sakurai. Block copolymer micelles as vehicles for drug delivery. J. Control. Release 24:119-132 (1993).

    Google Scholar 

  4. C. Allen, D. Maysinger, and A. Eisenberg. Nano-engineering block copolymer aggregates for drug delivery. Coll. Surf. B: Biointerf. 16:1-35 (1999).

    Google Scholar 

  5. C. Allen, J. Han, Y. Yu, D. Maysinger, and A. Eisenberg. Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosteron. J. Control. Release 63:275-286 (2000).

    Google Scholar 

  6. C. Allen, Y. Yu, A. Eisenberg, and D. Maysinger. Cellular internalization of PCL(20)-b-PEO(44) block copolymer micelles. Biochim. Biophys. Acta 1421:32-38 (1999).

    Google Scholar 

  7. S. F. Hamm-Alvarez, M. Sonee, K. Loran-Goss, and W. C. Shen. Paclitaxel and nocodazole differentially alter endocytosis in cultured cells. Pharm. Res. 13:1647-1656 (1996).

    Google Scholar 

  8. K. Kataoka, A. Harada, and Y. Nagasaki. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47:113-131 (2001).

    Google Scholar 

  9. D. Maysinger, O. Berezovska, R. Savic, P. L. Soo, and A. Eisenberg. Block copolymers modify the internalization of micelle-incorporated probes into neural cells. Biochim Biophy. Acta 1539:205-217 (2001).

    Google Scholar 

  10. Y. Mizumura, Y. Matsumura, T. Hamaguchi, N. Nishiyama, K. Kataoka, T. Kawaguchi, W. J. Hrushesky, F. Moriyasu, and T. Kakizoe. Cisplatin-incorporated polymeric micelles eliminate nephrotoxicity, while maintaining antitumor activity. Jpn. J. Cancer Res. 92:328-336 (2001).

    Google Scholar 

  11. H. S. Yoo and T. G. Park. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J. Control. Release 70:63-70 (2001).

    Google Scholar 

  12. S. Y. Leung, J. Jackson, H. Miyake, H. Burt, and M. E. Gleave. Polymeric micellar paclitaxel phosphorylates Bcl-2 and induces apoptotic regression of androgen-independent LNCaP prostate tumors. Prostate 44:156-163 (2000).

    Google Scholar 

  13. J. Taillefer, N. Brasseur, J. E. van Lier, V. Lenaerts, D. Le Garrec, and J. C. Leroux. In-vitro and in-vivo evaluation of pH-responsive polymeric micelles in a photodynamic cancer therapy model. J. Pharm. Pharmacol. 53:155-166 (2001).

    Google Scholar 

  14. J. E. Chung, M. Yokoyama, and T. Okano. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J. Control. Release 65:93-103 (2000).

    Google Scholar 

  15. L. W. Juang. Synthesis and characterization of amphiphilic triblock copolymers and their design for drug carriers, MS. thesis, National Taiwan University, College of Pharmacy, Taipei, Taiwan, 2002.

    Google Scholar 

  16. P. Cerrai, M. Tricoli, and F. Andruzzi. Polyether-polyester block copolymers by non-catalysed polymerization of ε-caprolactone with poly(ethylene glycol). Polymer 30:338-343 (1989).

    Google Scholar 

  17. Z. G. Wang, B. S. Hsiao, X. H. Zong, F. Yeh, J. J. Zhou, E. Dormier, and D. D. Jamiolkowski. Morphological development in absorbable poly(glycolide), poly(glycolide-co-lactide) and poly(glycolide-co-cprolactone) copolymers during isothermal crystallization. Polymer 41:621-628 (2000).

    Google Scholar 

  18. A. Saez, M. Guzman, J. Molpeceres, and M. R. Aberturas. Freeze-drying of polycaprolactone and poly(D, L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur. J. Pharm. Biopharm. 50:379-387 (2000).

    Google Scholar 

  19. S. Maiti and P. R. Chatterji. Comparison of the aggregation behavior of di-and triblock nonionic amphiphilies with linear and cyclic hydrophobic tails. Langmuir 13:5011-5015 (1997).

    Google Scholar 

  20. J. S. Hrkach, M. T. Peracchia, A. D. N. Lotan, and R. Langer. Nanotechnology for biomaterials engineering: structural characterization of amphiphilic polymeric nanoparticles by 1H-NMR spevtroscopy. Biomaterials 18:27-30 (1997).

    Google Scholar 

  21. T. Riley, T. Govender, S. Stolnik, S. D. Xiong, M. C. Garnett, L. Illum, and S. S. Davis. Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles. Coll. Sur. B: Biointerfaces 16:147-159 (1999).

    Google Scholar 

  22. H. J. Jeon, Y. I. Jeong, M. K. Jang, Y. H. Park, and J. W. Nah. Effect of solvent on the preparation of surfactant-free poly(DL-lactide-co-glycol) nanoparticles and norfloxacin release characteristics. Int. J. Pharm. 207:99-108 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jen Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, WJ., Juang, LW. & Lin, CC. Stability and Release Performance of a Series of Pegylated Copolymeric Micelles. Pharm Res 20, 668–673 (2003). https://doi.org/10.1023/A:1023215320026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023215320026

Navigation