Skip to main content
Log in

Corrosion fatigue of austempered ductile iron

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Corrosion fatigue (CF) behavior has been investigated for an austempered ductile iron (ADI) by conducting systematic fatigue tests at 20 Hz, including both high-cycle fatigue (HCF, S-N curves) and fatigue crack growth (FCG, da/dNK curves), in air, lubrication oil and several aqueous environments. Results showed the HCF resistance of ADI was dramatically reduced by the given aqueous media, in particular, to a greater extent with a decrease in pH value. However, the given room-temperature aqueous solutions did not exert significantly detrimental effects on the Stage II crack growth compared with an atmospheric environment but an increase in solution temperature caused enhanced Stage II crack growth. Among the given variables of the bulk environment, pH had the greatest influence on HCF response while temperature had the most influence on the FCG of long cracks. In addition, SAE 10W40 lubrication oil provided an inert environment to remove the corrosive effect and enhance the CF resistance of ADI. The overall comparisons indicated the environmental effects would generate more influence on Stage I cracking than on Stage II cracking for the given ADI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tanaka and H. Kage, Mater. Trans., JIM 33 (1992) 543.

    Google Scholar 

  2. B. V. Kovacs, J. Heat Treat. 5 (1987) 55.

    Google Scholar 

  3. T. N. Rouns, K. B. Rundman and D. M. Moore, AFS Trans. 92 (1984) 815.

    Google Scholar 

  4. M. Grech and J. M. Young, ibid. 98 (1990) 341.

    Google Scholar 

  5. K. P. Jen, J. Wu and S. Kim, ibid. 100 (1992) 833.

    Google Scholar 

  6. L. Bartosiewicz, A. R. Krause, F. A. Alberts, I. Singh and S. K. Putatunda, Materials Characterization 30 (1993) 221.

    Google Scholar 

  7. P. Shanmugan, P. P. Rao, K. R. Ududa and N. Venkataraman, J. Mater. Sci. 29 (1994) 4933.

    Google Scholar 

  8. M. Bahmani, R. Elliott and N. Varahram, ibid. 32 (1997) 5383.

    Google Scholar 

  9. C.-K. Lin and W.-J. Lee, Int. J. Fatigue 20 (1998) 301.

    Google Scholar 

  10. C.-K. Lin, P.-K. Lai and T.-S. Shih, ibid. 18 (1996) 297.

    Google Scholar 

  11. C.-K. Lin and J.-Y. Wei, Mater. Trans., JIM 38 (1997) 682.

    Google Scholar 

  12. C.-K. Lin and T.-P. Hung, Int. J. Fatigue 18 (1996) 309.

    Google Scholar 

  13. C.-K. Lin and C.-S. Fu, Mater. Trans., JIM 38 (1997) 693.

    Google Scholar 

  14. C.-K. Lin and Y.-L. Pai, Int. J. Fatigue 21 (1999) 45.

    Google Scholar 

  15. J.-R. Hwang, C.-C. Perng and Y.-S. Shan, ibid. 12 (1990) 481.

    Google Scholar 

  16. J-L. Doong and S.-I. Yu, ibid. 10 (1988) 219.

    Google Scholar 

  17. L. Bartosiewicz, A. R. Krause, B. Kovacs and S. K. Putatunda, AFS Trans. 100 (1992) 135.

    Google Scholar 

  18. G. L. Greno, J. L. Otegui and R. E. Boeri, Int. J. Fatigue 21 (1999) 35.

    Google Scholar 

  19. T. J. Marrow and H. Cetinel, Fatigue Fract. Eng. Mater. Struct. 23 (2000) 425.

    Google Scholar 

  20. C.-K. Lin and C.-W. Chang, J. Mater. Sci. 37 (2002) 709.

    Google Scholar 

  21. S. Muthukumarasamy and S. Seshan, AFS Trans. 100 (1992) 873.

    Google Scholar 

  22. M. N. James and W. Li, Mater. Sci. Eng. A 265 (1999) 129.

    Google Scholar 

  23. C.-K. Lin and J.-H. Wang, Mater. Trans., JIM 42 (2001) 1085.

    Google Scholar 

  24. C.-K. Lin and S.-T. Yang, Eng. Fract. Mech. 59 (1998) 779.

    Google Scholar 

  25. K. J. Miller and R. Akid, Proc. R. Soc. Lond. A 452 (1996) 1411.

    Google Scholar 

  26. C.-K. Lin and W.-J. Tsai, Fatigue Fract. Eng. Mater. Struct. 23 (2000) 489.

    Google Scholar 

  27. C. Laird and D. J. Duquette, in “Corrosion Fatigue: Chemistry, Mechanics and Microstructure,” edited by O. Devereux, A. J. McEvily and R.W. Staehle (National Association of Corrosion Engineers, Houston, USA, 1972) p. 88.

    Google Scholar 

  28. D. J. Mcadam, Proc. ASTM 26 (1926) 224.

    Google Scholar 

  29. D. F. Socie and J. Fash, AFS Trans. 90 (1982) 385.

    Google Scholar 

  30. B. F. Brown, C. T. Fujii and E. P. Dahlberg, J. Electrochem. Soc. 116 (1969) 218.

    Google Scholar 

  31. G. Sandoz, C. T. Fujii and B. F. Brown, Corrosion Sci. 10 (1970) 839.

    Google Scholar 

  32. R. P. Wei and M. Gao in “Hydrogen Effects on Mechanical Behavior,” edited by N. R. Moody and A. W. Thompson (The Minerals, Metal and Materials Society, Warrendale, PA, USA, 1990) p. 789.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Kuang Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CK., Yang, CH. & Wang, JH. Corrosion fatigue of austempered ductile iron. Journal of Materials Science 38, 1667–1672 (2003). https://doi.org/10.1023/A:1023211323116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023211323116

Keywords

Navigation