Skip to main content
Log in

Semidominant Effect of the l(1)ts403 (sbr 10) Mutation on Sex Chromosome Nondsjunction in Meiosis in Drosophila melanogaster Females Exposed to Heat

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The sbrgene of Drosophila melanogasterbelongs to the NXF(nuclear export factor) family responsible for the mRNA transport from nucleus to cytoplasm. We have shown that in the heat-exposed (37°C, 1 h) females, the l(1)ts403(sbr 10) mutation leads, in particular, to the high-frequency nondisjunction and loss of sex chromosomes in meiosis. For this trait, the incomplete dominance of the sbr 10 mutation is observed. At the same time, the sbr 10 mutation is recessive for many other traits of the heat-exposed flies: reduced viability, low fertility, impaired synthesis of the heat shock proteins, etc. The females heterozygous for the null allele (Df(1)v L4, a deletion eliminating gene srb) do not differ from females homozygous for the wild-type allele in frequency of the heat shock-induced nondisjunction and loss of sex chromosomes in meiosis. Because of this, the sbr 10 mutation can be assigned to the gain-of-function alleles (those gaining the dominance function). Expression of the mutant sbr 10 allele against the background of the wild-type allele suggests that in the heat shock-exposed females, the heat-modified product of this ts allele has an active effect on sex chromosome disjunction in meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Segref, A., Sharma, K., Doye, V., et al., Mex67p, a Novel Factor for Nuclear mRNA Export, Binds to Both Poly(A)+RNA and Nuclear Pores, EMBO J., 1997, vol. 16, no. 11, pp. 3256-3271.

    Google Scholar 

  2. Hurt, E., Sträßer, K., Segref, A., et al., Mex67p Mediates Nuclear Export of a Variety of RNA Polymerase II Transcripts, J. Biol. Chem., 2000, vol. 275, no. 12, pp. 8361-8368.

    Google Scholar 

  3. Tan, W., Zolotukhin, A.S., Bear, J., et al., The mRNA Export in Caenorhabditis elegans Is Mediated by Ce-NXF-1, an Ortholog of Human TAP/NXF and Saccharomyces cerevisiae Mex67p, RNA, 2000, vol. 6, no. 12, pp. 1762-1772.

    Google Scholar 

  4. Grüter, P., Tabernero, C., von Kobbe, C., et al., TAP, the Human Homologue of Mex67p, Mediates CTE-Dependent RNA Export from the Nucleus, Mol. Cell, 1998, vol. 1, no. 5, pp. 649-659.

    Google Scholar 

  5. Kang, Y. and Cullen, B.R., The Human TAP Protein Is a Nuclear mRNA Export Factor That Contains Novel RNA-Binding and Nuclear Cytoplasmic Transport Sequence, Genes Dev., 1999, vol. 13, no. 9, pp. 1126-1139.

    Google Scholar 

  6. Sträßer, K. and Hurt, E., Nuclear RNA Export in Yeast, FEBS Lett., 1999, vol. 452, nos. 1-2, pp. 77-81.

    Google Scholar 

  7. The FlyBase Database of the Drosophila Genome Projects and Community Literature, Nucleic Acids Res., 1999, vol. 27, no. 1, pp. 85-88.

  8. Evgen'ev, M.B. and Levin, A.V., The Effect of a ts Mutation on the Expression of Heat Shock-Inducible Genes in Drosophila melanogaster: 1. Analysis of Protein Synthesis, Genetika (Moscow), 1980, vol. 16, no. 6, pp. 1026-1029.

  9. Levin, A.V., Lozovskaya, E.R., and Evgen'ev, M.B., The Effect of High Temperatures on the Expression of the Heat Shock-Inducible Genes in Drosophila melanogaster: 2. Analysis of the Effect of a ts Mutation, Genetika (Moscow), 1984, vol. 20, no. 6, pp. 949-953.

    Google Scholar 

  10. Mamon, L.A., Mazur, E.L., Churkina, I.V., and Barabanova, L.V., The Effect of a High Temperature on Frequencies of Nondisjunction and Loss of the Sex Chromosomes in Drosophila melanogaster l(1)ts403 Females Defective in the Heat-Shock Protein System, Genetika (Moscow), 1990, vol. 26, no. 3, pp. 554-556.

    Google Scholar 

  11. Mamon, L.A., Bondarenko, L.V., and Tretyakova, I.V., et al., The Consequences of Cell Stress in Drosophila with Disturbed Synthesis of Heat-Shock Proteins, Vestn. St.-Petersb. Univ., Ser. 3, 1999, issue 4, no. 24, pp. 100-114.

    Google Scholar 

  12. Kutskova, Yu.A. and Mamon, L.A., The Consequences of Extreme Effects on Drosophila melanogaster Somatic Cells with Disturbed Synthesis of Heat-Shock Proteins, Genetika (Moscow), 1996, vol. 32, no. 10, pp. 1406-1416.

    Google Scholar 

  13. Mamon, L.A. and Kutskova, Yu.A., The Role of Heat-Shock Proteins in Restoration of Cell Proliferation in D. melanogaster Larvae Exposed to a High Temperature, Genetika (Moscow), 1993, vol. 29, no. 5, pp. 791-798.

    Google Scholar 

  14. Mamon, L.A., Nikitina, E.A., Golubcova, E.V., and Pugachova, O.M., Heat Shock Induced Cellular and Early Embryonic Death in Drosophila melanogaster ts-Mutant Strain, Pathophysiology, 1998, vol. 5, suppl. 1, p. 9.

    Google Scholar 

  15. Tretyakova, I.V., Lezin, G.T., Markova, E.G., et al., The Drosophila melanogaster sbr Gene Product and Its Yeast (Mex67p) and Human (TAP) Orthologs, Genetika (Moscow), 2001, vol. 37, no. 6, pp. 725-736.

    Google Scholar 

  16. Arking, R., Temperature-Sensitive Cell-Lethal Mutants of Drosophila: Isolation and Characterization, Genetics, 1975, vol. 80, no. 3, pp. 519-537.

    Google Scholar 

  17. Zhimulev, I.F., Semeshin, V.F., Kochneva, G.V., et al., A Cytogenetic Study of Region 9E-10A of the Drosophila melanogaster X-Chromosome: IV. Construction and Characterization of Chromosome Rearrangements in the ras-dsh Region, Genetika (Moscow), 1982, vol. 18, no. 4, pp. 596-612.

    Google Scholar 

  18. Bourguet, D. and Raymond, M., The Molecular Basis of Dominance Relationships: The Case of Some Recent Adaptive Genes, J. Evol. Biol., 1998, vol. 11, pp. 103-122.

    Google Scholar 

  19. Sprenger, F., Stevens, L.M., and Nüsslein-Volhard, C., The Drosophila Gene torso Encodes a Putative Receptor Tyrosine Kinase, Nature, 1989, vol. 338, no. 6215, pp. 478-483.

    Google Scholar 

  20. Lansbury, P.T., Evolution of Amyloid: What Normal Protein Folding May Tell Us about Fibrillogenesis and Disease, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 7, pp. 3342-3344.

    Google Scholar 

  21. Smith, D.F., Whitesell, L., and Katsanis, E., Molecular Chaperones: Biology and Prospects for Pharmacological Intervention, Pharmacol. Rev., 1998, vol. 50, no. 4, pp. 493-513.

    Google Scholar 

  22. Schneuwly, S., Kuroiwa, A., and Gehring, W.J., Molecular Analysis of the Dominant Homeotic Antennapedia Phenotype, EMBO J., 1987, vol. 6, pp. 201-206.

    Google Scholar 

  23. Gibson, G. and Gehring, W.J., Head and Thoracic Transformations Caused by Ectopic Expression of Antennapedia during Drosophila Development, Development (Cambridge, UK), 1988, vol. 102, pp. 657-675.

    Google Scholar 

  24. Mamon, L.A., Komarova, A.V., Bondarenko, L.V., et al., Development of Thermotolerance in Drosophila melanogaster Strain l(1)ts403 with Disturbed Synthesis of Heat-Shock Proteins, Genetika (Moscow), 1998, vol. 34, no. 7, pp. 920-928.

    Google Scholar 

  25. King, R.C. and Burnett, R.G., Autoradiographic Study of Uptake of Tritiated Glycine, Thymidine, and Uridine by Fruit Fly Ovaries, Science, 1959, vol. 129, pp. 1674-1675.

    Google Scholar 

  26. Huettner, A.F., Maturation and Fertilization in Drosophila melanogaster, J. Morphol., 1924, vol. 39, pp. 249-265.

    Google Scholar 

  27. Callaini, G. and Riparbelli, M.G., Fertilization in Drosophila melanogaster: Centrosome Inheritance and Organization of the First Mitotic Spindle, Dev. Biol., 1996, vol. 176, no. 2, pp. 199-208.

    Google Scholar 

  28. Tretyakova, I.V., Molecular Genetic Analysis of a Drosophila melanogaster DNA Region Containing the Vital l(1)ts403 Gene, Cand. Sci. (Biol.) Dissertation, St. Petersburg: St. Petersburg State Univ., 2000.

    Google Scholar 

  29. Wilkie, G.S., Zimyanin, V., Kirby, R., et al., Small bristles, the Drosophila Ortholog of NXF-1, Is Essential for mRNA Export throughout Development, RNA, 2001, vol. 7, no. 12, pp. 1781-1792.

    Google Scholar 

  30. Evgen'ev, M.B. and Denisenko, O.N., The Effect of a ts Mutation on the Expression of the Heat Shock-Inducible Genes in Drosophila melanogaster: 3. Synthesis of HSP70-Related Proteins, Genetika (Moscow), 1990, vol. 26, no. 2, pp. 266-271.

  31. Cummings, M. and King, R., The Cytology of the Vitellogenetic Stages of Oogenesis in Drosophila melanogaster, J. Morphol., 1969, vol. 128, pp. 427-442.

    Google Scholar 

  32. Edgar, B.A. and Schubiger, G., Parameters Controlling Transcriptional Activation during Early Drosophila Development, Cell (Cambridge, Mass.), 1986, vol. 44, no. 6, pp. 871-877.

    Google Scholar 

  33. Bashirullah, A., Cooperstock, R.L., and Lipshitz, H.D., RNA Localization in Development, Annu. Rev. Biochem., 1998, vol. 67, pp. 335-394.

    Google Scholar 

  34. Lipshitz, H.D. and Smibert, C.A., Mechanisms of RNA Localization and Translational Regulation, Curr. Opin. Genet. Dev., 2000, vol. 10, no. 5, pp. 476-488.

    Google Scholar 

  35. Yoon, D.W., Lee, H., Seol, W., et al., Tap: A Novel Cellular Protein That Interacts with Tip of Herpesvirus Saimiri and Induces Lymphocyte Aggregation, Immunity, 1997, vol. 6, no. 5, pp. 571-582.

    Google Scholar 

  36. Jung, J.U., Lang, S.M., Jun, T., et al., Downregulation of Lck-Mediated Signal Transduction by Tip of Herpesvirus Saimiri, J. Virol., 1995, vol. 69, no. 12, pp. 7814-7822.

    Google Scholar 

  37. Coakley, T., Hyperthermia Effects on the Cytoskeleton and on Cell Morphology, Temperature and Animal Cells: Symp. Soc. Exp. Biol., 1987, no. 41, pp. 187-211.

    Google Scholar 

  38. Laszlo, A., The Effects of Hyperthermia on Mammalian Cell Structure and Function, Cell Prolif., 1992, vol. 25, no. 2, pp. 59-87.

    Google Scholar 

  39. Heald, R., Tournebize, R., Blank, T., et al., Self-Organization of Microtubules into Bipolar Spindles around Artificial Chromosomes in Xenopus Egg Extracts, Nature, 1996, vol. 382, no. 6590, pp. 420-425.

    Google Scholar 

  40. Korey, C.A., Wilkie, G.S., Davis, I., and Van Vactor, D., Small bristles, DmNXF1, Is Required for the Morphogenesis of Multiple Tissues during Drosophila Development, Genetics, 2001, vol. 159, no. 4, pp. 1659-1670.

    Google Scholar 

  41. Herold, A., Suyama, M., Rodrigues, J.P., et al., TAP (NXF1) Belongs to a Multigene Family of Putative RNA Export Factors with a Conserved Modular Architecture, Mol. Cell. Biol., 2000, vol. 20, no. 23, pp. 8996-9008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitina, E.A., Komarova, A.V., Golubkova, E.V. et al. Semidominant Effect of the l(1)ts403 (sbr 10) Mutation on Sex Chromosome Nondsjunction in Meiosis in Drosophila melanogaster Females Exposed to Heat. Russian Journal of Genetics 39, 269–275 (2003). https://doi.org/10.1023/A:1023208725228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023208725228

Keywords

Navigation