Skip to main content
Log in

Perspectives of sulfate reducing bioreactors in environmental biotechnology

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

Although the study of sulfur cycle bacteria wasalready started around the 1890's by the famousmicrobiologists Winogradsky and Beijerinck,there are nowadays still many new discoveriesto be made about the metabolic properties,phylogenetic position and ecological behaviourof bacteria that play a role in the biologicalsulfur cycle. The current interest of thescientific community in the biological sulfurcycle is very high, especially because of themany special organisms that have recently beendiscovered in deep sea and other environmentscharacterised by extreme conditions (such ashigh salt, low/high pH or temperature) and alsoin bioreactor environments. This paperhighlights the many unique opportunities thesulfur cycle bacteria offer for sulfurpollution abatement and sulfur recovery.Special attention is given to bioreactorsystems where dissimilatory sulfate reductionis an important bioconversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreasen K & Nielsen PH (1997) Application of microautoradiography to study substrate uptake by filamentous microorganisms in activated sludge. Appl. Environ. Microbiol. 63: 3662–3668

    Google Scholar 

  • Bastone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H & Vavilin VA (2002) The IWA Anaerobic Digestion Model No1. Wat. Sci. Tech. 45(10): 65–73

    Google Scholar 

  • Beuling EE, van Dusschoten D, Lens P, van den Heuvel JC, van As H & Ottengraf SPP (1998) Characterization of the diffusive properties of biofilms using pulsed field gradient nuclear magnetic resonance. Biotech. Bioeng. 60: 283–291

    Google Scholar 

  • Boon M (2000) Bioleaching of sulfide minerals. In: Lens PNL & Hulshoff Pol L (Eds) Environmental Technologies to Sulfur Pollution–Principles and Engineering (pp. 105–130). International Water Association, London

    Google Scholar 

  • Brandt KK & Ingvorsen K (1997) Desulfobacter halotolerans sp. nov., a halotolerant acetate–oxidizing sulfate–reducing bacterium isolated from sediments of Great Salt Lake, Utah. System. Appl. Microbiol. 20: 366–373

    Google Scholar 

  • Buisman CNJ, Geraats BG, Ijspeert P & Lettinga G (1990) Optimization of sulphur production in a biotechnological sulphideremoving reactor. Biotech. Bioeng. 35: 50–56

    Google Scholar 

  • Callendar IJ & Barford JP (1983) Precipitation, chelation and availability of metals as nutrients in anaerobic digestion. II Application. Biotechnol Bioeng 25: 1959–1972

    Google Scholar 

  • Caumette P, Cohen Y & Matheron R (1991) Isolation and characterization of Desulfovibrio halophilus sp. nov., a halophilic sulfate–reducing bacterium isolated from Solar Lake (Sinai). System Appl. Microbiol. 14: 33–38

    Google Scholar 

  • Chazal PhM & Lens P (2000) Interactions between the sulfur and nitrogen cycle: microbiology and process technology. In: Lens PNL & Hulshoff Pol L (Eds) Environmental Technologies to Treat Sulfur Pollution–Principles and Engineering (pp 415–447). International Water Association, London

    Google Scholar 

  • Cho K–S, Hirai M & Shoda M (1992) Enhanced removal efficiency of malodorous gases in a pilot–scale biofilter inoculated with Thiobacillus thioparus DW44. J. Ferment. Bioeng 73: 46–50

    Google Scholar 

  • Chuichulcherm S, Nagpal S, Peeva L & Livingston A (2001) Treatment of metal–containing wastewaters with a novel extractive membrane reactor using sulfate–reducing bacteria. J. Chem. Tech. Biotechnol. 76: 61–68

    Google Scholar 

  • Clancy PB, Venkataraman N & Lynd LR (1992) Biochemical inhibition of sulfate reduction in batch and continuous anaerobic digesters. Wat. Sci. Tech. 25: 51–60

    Google Scholar 

  • Colleran E, Finnegan S & Lens P (1995) Anaerobic treatment of sulphate–containing waste streams. Antonie van Leeuwenhoek 67: 29–46

    Google Scholar 

  • Crocetti GR, Hugenholtz P, Bond PL, Schuler A, Keller J, Jenkins D & Blackall LL (2000) Identification of polyphosphateaccumulating organisms and design of 16S rRNA–directed probes for their detection and quantitation. Appl. Environ. Microbiol. 66: 1175–1182

    Google Scholar 

  • Dabert P, Delgenes J–P, Moletta R & Godon J–J (2002) Contribution of molecular microbiology to the study in water pollution removal of microbial community dynamics. Re/Views in Environmental Science and Bio/Technology 1: 39–49

    Google Scholar 

  • Dewettinck T, Van Hege K & Verstraete W (2001) Development of a rapid pH–based biosensor to monitor and control the hygienic quality of reclaimed domestic wastewater. Appl. Microbiol. Biotechnol. 131: 61–72

    Google Scholar 

  • De Smul A & Verstraete W (1999) The phenomenology and the mathematical modeling of the silicone–supported chemical oxidation of aqueous sulfide to elemental sulfur with ferric sulfate. J. Chem. Technol. Biotechnol. 74: 456–466

    Google Scholar 

  • Ernst WHO (2000) Agricultural aspects of sulfur. In: Lens PNL & Hulshoff Pol L (Eds) Environmental Technologies to Treat Sulfur Pollution–Principles and Engineering (pp 355–376) International Water Association, London

    Google Scholar 

  • Ekama GA, Barnard JL, Günthert FW, Krebs P, McCorquodale JA, Parker DS &Wahlberg EJ (1997) IAWQ Scientific and Technical Report No. 6 on secondary settling tanks: theory, modelling, design and operation. Simpson Drewett and Co. Ltd., Richmond, Surrey, 216 pp.

  • Fedorovich V, Greben M, Kalyuzhnyi S, Lens P, Hulshoff Pol L & Lettinga G (2000) Use of membranes for hydrogen supply in a sulfate reducing reactor. Biodegradation 11: 295–303

    Google Scholar 

  • Fedorovich V, Kalyuzhnyi S &Lens P (2003) Extension of anaerobic digestion model no. 1 with the processes of sulphate reduction. Applied Biochemistry and Biotechnology, in press

  • Gibert O, de Pablo J, Cortina JL & Ayora C (2002) Treatment of acid mine drainage by sulphate–reducing bacteria using permeable reactive barriers: from laboratory to full–scale experiments. Re/Views in Environmental Science and Bio/Technology 1: 327–333 (this issue)

    Google Scholar 

  • Gray ND, Howarth R, Pickup RW, Gwyn Jones J & Head IM (2000) Use of combined microautoradiography and fluorescence in situ hybridization to determine carbon metabolism in mixed natural communities of uncultured bacteria from the genus Achromatium. Appl. Environ. Microbiol. 66: 4518–4522

    Google Scholar 

  • Gonzalez–Gil G, Lens P, Van Aelst A, Van As H, Versprille AI & Lettinga G (2001) Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor. Appl. Environ. Microbiol. 67: 3683–3692

    Google Scholar 

  • Halfmeier H, Schafer–Treffenfeldt W & Reuss M (1993) Potential of Thiobacillus ferroxidans for waste gas purification. Part 2. Increase in continuous ferrous iron oxidation kinetics using immobilized cells. Appl. Microbiol. Biotechnol. 40: 582–587

    Google Scholar 

  • Haridas A, Majumdar S &Kumar K (2000) Reverse Fluidised Loop Reactor for oxidation of sulphide. Paper presented at the Workshop on Anaerobic Processes in Wastewater Management. MHO–cooperation Cochin University of Science and Technology, TU Delft and WUR. 9–15 October, Cochin, India

  • Hedderich R, Klimmek O, Kroger A, Dirmeier R, Keller M & Stetter KO (1998) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol. Rev. 22: 353–381

    Google Scholar 

  • Henry EA, Devereux R, Maki JS, Gilmour CC, Woese CR, Mandelco L, Schauder R, Remsen CC & Mitchell R (1994) Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch. Microbiol. 16: 62–69

    Google Scholar 

  • Hiligsmann S, Jacques P & Thonart P (1998) Isolation of highly performant sulfate reducers from sulfate–rich environments. Biodegradation 9: 285–292

    Google Scholar 

  • Holst O, Stenberg B & Christiansson M (1998) Biotechnological possibilities for waste tyre–rubber treatment. Biodegradation 9: 301–310

    Google Scholar 

  • Huisman JW, Van den Heuvel JC & Ottengraf SPP (1990) Enhancement of external mass transfer by gaseous end products. Biotechnol. Progr. 6: 425–429

    Google Scholar 

  • Hulshoff Pol L, Lens P, Stams AJM & Lettinga G (1998) Anaerobic treatment of sulfate–rich wastewaters. Biodegradation 9: 213–224

    Google Scholar 

  • Isa Z, Grusenmeyer S & Verstraete W (1986) Sulfate reduction relative to methane production in high–rate anaerobic digestion: Technical aspects. Appl. Environ. Microbiol. 51: 572–579

    Google Scholar 

  • Janssen AJH, Sleyster R, van der Kaa C, Jochemsen A, Bontsema J & Lettinga G (1995) Biological sulphide oxidation in a fed–batch reactor. Biotech. Bioeng. 47: 327–333

    Google Scholar 

  • Janssen AJH, Ma SC, Lens P & Lettinga G (1997) Performance of a sulphide–oxidizing expanded–bed reactor supplied with dissolved oxygen. Biotech. Bioeng. 53: 32–40

    Google Scholar 

  • Janssen AJH, Meijer S, Bontsema J & Lettinga G (1998) Application of the redox potential for controlling a sulfide oxidizing bioreactor. Biotech. Bioeng. 60: 147–155

    Google Scholar 

  • Jensen AB & Webb C (1995) Treatment of H2S–containing gases: a review of microbiological alternatives. EnzymeMicrob. Technol. 17: 2–10

    Google Scholar 

  • Johnson DB & Hallberg KB (2002) Pitfalss of passive mine water treatment. Re/Views in Environmental Science and Bio/Technology 1: 335–343 (this issue)

    Google Scholar 

  • Kalyuzhnyi S, Fedorovich V, Lens P, Hulshoff Pol L & Lettinga G (1998) Mathematical modelling as a tool to study population dynamics between sulfate reducing and methanogenic bacteria. Biodegradation 9: 187–199

    Google Scholar 

  • Kaufman EN, Little MH & Selvaraj PT (1996) Recycling of FGD gypsum to calcium carbonate and elemental sulfur using mixed sulfate–reducing bacteria with sewage digest as carbon source. J. Chem. Tech. Biotechnol. 66: 365–374

    Google Scholar 

  • Keller J &Yuan Z (2001) Combined hydraulic and biological modelling and full–scale validation of SBR processes', Fifth Kollekolle Seminar: Modelling of Activated Sludge Processes in Theory and Practise, Kollekolle, Denmark pp 169–178

  • Keller J, Yuan Z & Blackall LL (2002) Integrating process engineering and microbiology tools to advance activated sludge wastewater treatment research and development. Re/Views in Environmental Science and Bio/Technology 1: 83–97

    Google Scholar 

  • Kim BW, Kim EH, Lee SC & Chang HN (1993) Model–based control of feed rate and illuminance in a photosynthetic fed–batch reactor for H2S removal. Bioprocess Eng. 8: 263–269

    Google Scholar 

  • Klein J (1998) Technological and economic aspects of coal biodesulfurisation. Biodegradation 9: 293–300

    Google Scholar 

  • Knoblauch C, Sahm K & Jorgensen BB (1999) Psychrophilic sulfate–reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigrus oceanense gen. nov., sp nov., Desulfofrigus fragile sp nov., Desulfofaba gelida gen. nov., sp nov., Desulfotalea psychrophila gen. nov., sp nov and Desulfotalea arctica sp nov. Int. J. System. Bacteriol. 49: 1631–1643

    Google Scholar 

  • Kurisu F, Satoh H, Mino T & Matsuo T (2002) Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA and the quinone profile method. Wat. Res. 36: 429–438

    Google Scholar 

  • Landau MV, Berger D & Herskowitz M (1996) Hydrodesulfurization of methyl–substituted dibenzothiophenes: fundamental study of routes to deep desulfurization. J. Catal. 159: 236

    Google Scholar 

  • Lens P, de Beer D, Cronenberg C, Houwen F, Ottengraf S & Verstraete W (1993) Inhomogenic distribution of microbial activity in UASB aggregates: pH and glucose microprofiles. Appl. Environ. Microbiol. 59: 3803–3815

    Google Scholar 

  • Lens P, Massone A, Rozzi A & Verstraete W (1995a) Effect of sulfate concentration and scraping on aerobic fixed film reactors. Wat. Res. 29: 857–870

    Google Scholar 

  • Lens PN, De Poorter M–P, Cronenberg CC & Verstraete WH (1995b) Sulfate reducing and methane producing bacteria in aerobic wastewater treatment. Wat. Res. 29: 871–880

    Google Scholar 

  • Lens PNL & Hemminga MA (1998) Nuclear magnetic resonance in environmental engineering: principles and applications. Biodegradation 9: 393–409

    Google Scholar 

  • Lens P, Visser A, Janssen A, Hulshoff Pol L & Lettinga G (1998a) Biotechnological treatment of sulfate rich wastewaters. Crit. Rev. Env. Sci. Technol. 28: 41–88

    Google Scholar 

  • Lens P, van den Bosch M, Hulshoff Pol L & Lettinga G (1998b) Effect of staging on volatile fatty acid degradation in a sulfidogenic granular sludge reactor. Wat. Res. 32: 1178–1192

    Google Scholar 

  • Lens P, Dijkema C & Stams A (1998c) 13C–NMR study of propionate metabolism by sludges from bioreactors treating sulfate and sulfide rich wastewater. Biodegradation 9: 179–186

    Google Scholar 

  • Lens P, Vergeldt F, Lettinga G & van As H (1999) 1H–NMR study of the diffusional properties of methanogenic aggregates. Wat. Sci. Tech. 39(7): 187–194

    Google Scholar 

  • Lens P, Sipma J, Hulshof Pol L & Lettinga G (2000) Effect of staging and nitrate addition on sulfidogenic acetate removal.Wat. Res. 34: 31–42

    Google Scholar 

  • Lens PNL & Kuenen JG (2001) The biological sulfur cycle: novel opportunities for environmental biotechnology. Wat. Sci. Tech. 44(8): 57–66

    Google Scholar 

  • Lens PNL, Korthout D, van Lier JB, Hulshoff Pol LW & Lettinga G (2001a) Effect of upflow velocity on thermofilic sulfate reduction under acidifying conditions. Environ. Technol. 22: 183–193

    Google Scholar 

  • Lens PNL, Boncz M, Sipma J, Brunning H & Rulkens W (2001b) Catalytical oxidation of odourous compounds. In: Stuetz R & Frechen F–B (Eds) Wastewater Treatment Odor Abatement (pp 365–395). International Water Association, London

    Google Scholar 

  • Lens PNL, Klijn R, van Lier JB, Hulshoff Pol LW &Lettinga G (2003a) Effect of specific gas loading rate on thermofilic sulfate reduction under acidifying conditons. Wat. Res., in press

  • Lens P, Gastesi R, Hulshoff Pol L &Lettinga G (2003b) Use of a cell suspension bioreactor for biological flue gas desulfurisation. Biodegradation, in press

  • Liu Y, Karnauchow TM, Jarrell KF, Balkwill DL, Drake GR, Ringelberg D, Clarno R & Boone DR (1997) Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov., from a deep terrestial subsurface, and Desulfotomaculum luciae sp. nov., from a hot spring. Int. J. Syst. Bacteriol. 47: 615–621

    Google Scholar 

  • Lovley DR & Phillips EJP (1994) Novel processes for anaerobic sulfate production from elemental sulfur by sulfate–reducing bacteria. Appl. Environ. Microbiol. 60: 2394–2399

    Google Scholar 

  • Lovley DR, Coates JD, Blunt–Harris EL, Phillips EJP & Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382: 445–448

    Google Scholar 

  • Maree JP, Hulse G, Dods D & Schutte CE (1991) Pilot plant studies on biological sulphate removal from industrial effluent. Wat. Sci. Tech. 23: 1293–1300

    Google Scholar 

  • McFarland MJ & Jewell WJ (1989) In situ control of sulfide emission during thermophilic anaerobic digestion process. Wat. Res. 23: 1571–1577

    Google Scholar 

  • Menert A, Liiders M, Kurissoo T & Vilu R (2001) Microcalorimetric monitoring of anaerobic digestion processes. J. Therm. Anal. Cal. 64: 281–291

    Google Scholar 

  • Muthumbi W, Boon N, Boterdaele R, De Vreese I, Top EM & Verstraete W (2001) Microbial sulfate reduction with acetate: process performance and composition of the bacterial communities in the reactor at different salinity levels. Appl. Microbiol. Biotechol. 55: 787–793

    Google Scholar 

  • Nga DP, Dang TCH, Hien LT & Stan–Lotter H (1996) Desulfovibrio vietnamensis sp. nov., a halophilic sulfate–reducing bacterium from Vietnamese oil fields. Anaerobe 2: 385–392

    Google Scholar 

  • O'Flaherty V, Lens P, Leahy B & Colleran E (1998) Long–term competition between sulfate–reducing and methane–producing bacteria during full–scale anaerobic treatment of citric acid production wastewater. Wat. Res. 32: 815–825

    Google Scholar 

  • O'Flaherty V & Colleran E (2000) Sulfur problems in anaerobic digestion. In: Lens PNL & Hulshoff Pol L (Eds) Environmental Technologies to Treat Sulfur Pollution–Principles and Engineering (pp 467–489). International Water Association, London

    Google Scholar 

  • Omil F, Lens P, Hulshoff Pol L & Lettinga G (1996) Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor. Process Biochem. 31: 699–710

    Google Scholar 

  • Omil F, Lens P, Hulshoff Pol L & Lettinga G (1997a) Characterization of biomass from a sulphidogenic, volatile fatty acid–degrading granular sludge reactor. Enzyme Microb. Technol. 20: 229–236

    Google Scholar 

  • Omil F, Oude Elferink SJWH, Lens P, Hulshoff Pol L & Lettinga G (1997b) Effect of the inoculation with Desulforhabdus amnigenus and pH or O2 shocks on the competition between sulfate reducing and methanogenic bacteria in an acetate fed UASB reactor. Biores. Technol. 60: 113–122

    Google Scholar 

  • Omil F, Lens P, Visser A, Hulshoff Pol LW & Lettinga G (1998) Long term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids. Biotech. Bioeng. 57: 676–685

    Google Scholar 

  • Oude Elferink SJWH, Maas RN, Harmsen HJM & Stams AJM (1995) Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164: 119–124

    Google Scholar 

  • Oude Elferink SJWH, Boschker HTS & Stams AJM(1998) Identifi–cation of sulfate reducers and Syntrophobacter sp. in anaerobic granular sludge by fatty–acid biomarkers and 16S rRNA probing. Geomicrobial J. 15: 3–18

    Google Scholar 

  • Pandey RA & Malhotra S (1999) Desulfurization of gaseous fuels with recovery of elemental sulfur: an overview. Crit. Rev. Env. Sci. Technol. 29: 229–268

    Google Scholar 

  • Philar B, Valenta P & Nurnberg HW (1986) Electrochemical reduction of Ni(II) on the hanging mercury drop electrode in the presence of dimethylglyoxime. J. Electroanal. Chem. 214: 157–177

    Google Scholar 

  • Pikuta E, Lysenko A, Suzina N, Osipov G, Kuznetsov B, Tourova T, Akimenko V & Laurinavichius K (2000) Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate–reducing bacterium. Int. J. System. Evolut. Microbiol. 50: 25–33

    Google Scholar 

  • Pind PF, Angelidaki I & Ahring B.K (2002) A novel in–situ sampling and VFA sensor technique for anaerobic systems. Wat. Sci. Tech. 45(10): 261–268

    Google Scholar 

  • Rebac S, van Lier JB, Lens P, van Cappellen J, Vermeulen M, Stams AJM, Dekkers F, Swinkels KThM & Lettinga G (1998) Psychrophilic (6–15 °C) high–rate treatment of malting waste water in a two module EGSB system. Biotechnol. Progr. 14: 856–864

    Google Scholar 

  • Reis MAM, Lemos PC & Carrondo MJT (1995) Biological sulfate removal of industrial effluents using the anaerobic digestion. Med. Fac. Landbouww. Univ. Gent. 60: 2701–2707

    Google Scholar 

  • Rintala J, Sanz Martin JL & Lettinga G (1991) Thermophilic anaerobic treatment of sulfate–rich pulp and paper integrate process water. Wat. Sci. Tech. 24: 149–160

    Google Scholar 

  • Rintala J, Lepisto S & Ahring B (1993) Acetate degradation at 70 °C in upflow anaerobic sludge blanket reactors and temperature response of granules grown at 70 °C. Appl. Environ. Microbiol. 59: 1742–1746

    Google Scholar 

  • Rinzema A & Lettinga G (1988) Anaerobic treatment of sulfate containing waste water. In: Wise DL (Ed) Biotreatment Systems, Vol III (pp 65–109). CRC Press Inc., Boca raton, USA

    Google Scholar 

  • Santegoeds CM, Schramm A & de Beer D (1998) Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation 9: 159–167

    Google Scholar 

  • Santegoeds CM, Damgaard LR, Hesselink G, Zopfi J, Lens P, Muyzer G & de Beer D (1999) Distribution of sulfate reducing and methanogenic bacteria in UASB aggregates determined by microsensors and molecular techniques. Appl. Environ. Microbiol. 65: 4618–4629

    Google Scholar 

  • Särner E (1990) Removal of sulphate and sulphite in an anaerobic trickling (ANTRIC) filter. Wat. Sci. Tech. 22: 395–404

    Google Scholar 

  • Sass H, Berchthold M, Branke J, König H, Cypionka H & Babenzien HD (1998) Psychrotolerant sulfate–reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst. Appl. Microbiol. 21: 212–219

    Google Scholar 

  • Sipma J, Lens PNL, Vieira A, Miron Y, van Lier JB, Hulshoff Pol LW & Lettinga G (2000) Thermofilic sulfate reduction in UASB reactors under acidifying conditons. Process Biochem. 35: 509–522

    Google Scholar 

  • Sipma J, van Bree R, Janssen AJH, Arena B, Hulshoff Pol LW & Lettinga G (2002a) Degradation of methanethiol in an continuously operated upflow anaerobic sludge–blanket reactor. Water Environ. Res. 74: 15–22

    Google Scholar 

  • Sipma J, Janssen AJH, Svitelskaya A, van der Mark B, Hulshoff Pol LW &Lettinga G (2002b) Potentials of biological oxidation processes for the treatment of spent caustics containing thiols. Biores. Technol., in press

  • Sipma J, Lens PNL, Stams AJM &Lettinga G (2003) Carbon monoxide conversion via the water–gas–shift reaction in anaerobic sludges. FEMS Microbial Ecology, in press

  • Smet E, Lens P & Van Langenhove H (1998) Treatment of waste gases contaminated with odorous sulfur compounds. Crit. Rev. Env. Sci. Technol. 28: 89–116

    Google Scholar 

  • Sonne–Hansen J & Ahring BK (1999) Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. System. Appl. Microbiol. 22: 559–564

    Google Scholar 

  • Stefess GC, Torremans RAM, De Schrijver R, Robertson LA & Kuenen JG (1996) Quantitative measurement of sulphur formation by steady–state and transient–state continuous cultures of autotrophic Thiobacillus species. Appl. Microbiol. Biotechnol. 45: 169–175

    Google Scholar 

  • Stetter KO & Gaag G (1983) Reduction of molecular sulfur by methanogenic bacteria. Nature 305: 309–311

    Google Scholar 

  • Stucki G, Hanselmann KW & Hürzeler A (1993) Biological sulfuric acid transformation: reactor design and process optimization. Biotech. Bioeng. 41: 303–315

    Google Scholar 

  • Sublette KL & Sylvester ND (1987) Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans. Biotech. Bioeng. 29: 753–758

    Google Scholar 

  • Takahashi M & Kyosai S (1991) Pilot plant study on microaerobic self–granulated sludge process (multi–stage reversing–flow bioreactor: MRB). Wat. Sci. Tech. 23: 973–980

    Google Scholar 

  • Tanimoto Y, Tasaki M, Okamura K, Yamaguchi M & Minami K (1989) Screening growth inhibitors of sulfate–reducing bacteria and their effects on methane fermentation. J. Ferment. Bioeng. 68: 353–359

    Google Scholar 

  • Tardy–Jacquenod C, Magot M, Laigret F, Kaghad M, Patel BKC, Guezennec J, Matheron R & Caumette P (1996) Desulfovibrio gabonensis sp. nov., a new a new moderately halophilic sulfatereducing bacterium isolated from an oil pipeline. Int. J. Syst. Bacteriol. 46: 710–715

    Google Scholar 

  • Tichy R, Grotenhuis JTC, Bos P & Lens P (1998) Solid–state reduced sulfur compounds: environmental aspects and bioremediation. Crit. Rev. Env. Sci. Technol. 28: 1–40

    Google Scholar 

  • Tucker MD, Barton LL & Thomson BM (1998) Removal of U and Mo from water by immobilised Desulfovibrio desulfuricans in column reactors. Biotech. Bioeng. 60: 88–96

    Google Scholar 

  • Vallero MVG, Lens PNL, Hulshoff Pol LW &Lettinga G (2003a) Effect of salinity on thermophilic (55 °C) methanol degradation in sulfate reducing reactors. Wat. Res., in press

  • Vallero MVG, Paulo PL, Trevino RHM, Lettinga G &Lens PNL (2003b) Effect of sulfate on methanol degradation in thermophilic (55 °C) methanogenic UASB reactors. Enzyme Microb. Technol., in press

  • Vallero MVG, Camarero E, Lettinga G &Lens PNL (2003c) Hyperthermophilic sulfate reduction in methanol and formate fed UASB reactors. Appl. Environ. Microbiol., submitted

  • van den Heuvel JC, Vredenbregt LHJ, Portegies–Zwart I & Ottengraf SPP (1995) Acceleration of mass transfer in methaneproducing loop reactors. Antonie van Leeuwenhoek 67: 125–130

    Google Scholar 

  • Van der Zee FP, Lettinga G & Field JA (2001a) Azo dye decolourisation by anaerobic granular sludge. Chemosphere 44: 1169–1176

    Google Scholar 

  • Van der Zee FP, Bouwman RHM, Strik DPBTP, Lettinga G & Field JA (2001b) Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic reactors. Biotech. Bioeng. 75: 691–701

    Google Scholar 

  • van Houten RT, Hulshoff Pol LW & Lettinga G (1994) Biological sulphate reduction using gas–lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotech. Bioeng. 44: 586–594

    Google Scholar 

  • van Houten RT, Oude Elferink SJWH, van Hamel SE, Hulshoff Pol LW & Lettinga G (1995) Sulphate reduction by aggregates of sulphate–reducing bacteria and homo–acetogenic bacteria in a lab–scale gas–lift reactor. Biores. Technol. 54: 73–79

    Google Scholar 

  • van Houten RT, van der Spoel H, van Aelst AC, Hulshoff Pol LW & Lettinga G (1996) Biological sulfate reduction using synthesis gas as energy and carbon source. Biotech. Bioeng. 50: 136–144

    Google Scholar 

  • van Houten RT, Yun SY & Lettinga G (1997) Thermophilic sulphate and sulfite reduction in lab–scale gas–lift reactors using H2 and CO2 as energy and carbon source. Biotech. Bioeng. 55: 807–814

    Google Scholar 

  • Van Lier JB, Boersma F, Debets MMWH & Lettinga G (1994) Highrate thermophilic anaerobic wastewater treatment in compartmentalized upflow reactors. Wat. Sci. Tech. 30: 251–261

    Google Scholar 

  • Verstraete W, de Beer D, Pena M, Lettinga G & Lens P (1996) Anaerobic bioprocessing of waste. World J. Microbiol. Biotechnol. 12: 221–238

    Google Scholar 

  • Vincke E, Boon N & Verstraete W (2001) Analysis of the microbial communities on corroded sewer pipes–case study. Appl. Microbiol. Biotechnol. 57: 776–785

    Google Scholar 

  • Visser A, Gao Y & Lettinga G (1992) The anaerobic treatment of a synthetic sulfate containing wastewater under thermophilic (55 °C) conditions. Wat. Sci. Tech. 25: 193–202

    Google Scholar 

  • Visser A, Gao Y & Lettinga G (1993a) Effects of short–term temperature increases on the mesophilic anaerobic breakdown of sulfate containing synthetic wastewater. Wat. Res. 27: 541–550

    Google Scholar 

  • Visser A, Beeksma I, van der Zee F, Stams AJM & Lettinga G (1993b) Anaerobic degradation of volatile fatty acids at different sulfate concentrations. Appl. Microbiol. Biotechnol. 40: 549–556

    Google Scholar 

  • Visser A, Alphenaar PA, Gao Y & Lettinga G (1993c) Granulation and immobilisation of methanogenic and sulfate–reducing bacteria in high rate anaerobic reactors. Appl. Microbiol. Biotechnol. 40: 575–581

    Google Scholar 

  • Visser A, Hulshoff Pol LW & Lettinga G (1996) Competition of methanogenic and sulfidogenic bacteria. Wat. Sci. Tech. 33: 99–110

    Google Scholar 

  • Visser JM, Robertson LA, Van Verseveld HW & Kuenen JG (1997) Sulfur production by obligately chemolithoautotrophic Thiobacillus species. Appl. Environ. Microbiol. 63: 2300–2305

    Google Scholar 

  • Weijma J, Stams AJM, Hulshoff Pol LW & Lettinga G (2000) Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotech. Bioeng. 67: 354–363

    Google Scholar 

  • Weijma J, Copini CFM, Buisman CJN & Schultz CE (2002) Biological recovery of metals, sulfur and water in the mining and metallurgical industry. In: Lens P, Hulshoff Pol LW, Wilderer P & Asano T (Eds) Water and Resource Recovery in Industry: Concepts, Systems and Implementation (pp 605–622). International Water Association, London

    Google Scholar 

  • Wood MG, Howes T, Keller J & Johns MR (1998) Two dimensional computational fluid dynamic models for waste stabilisation ponds. Wat. Res. 32: 958–963

    Google Scholar 

  • Xue HB, Jansen S, Prasch A & Sigg L (2001) Nickel speciation kinetics in freshwater by ligand exchange and DPCSV. Environ. Sci. Technol. 35: 539–546

    Google Scholar 

  • Yadav VK & Archer DB (1989) Sodium molybdate inhibits sulphate reduction in the anaerobic treatment of high sulphate molasses wastewater. Appl. Microbiol. Biotechnol. 3: 103–106

    Google Scholar 

  • Zandvoort MH, Osuna MB, Geerts R, Lettinga G & Lens PNL (2002) Effect of nickel deprivation on methanol degradation in a methanogenic granular sludge bioreactor. J. Ind. Microbiol. Biotechnol. 29: 268–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lens, P., Vallerol, M., Esposito, G. et al. Perspectives of sulfate reducing bioreactors in environmental biotechnology. Re/Views in Environmental Science and Bio/Technology 1, 311–325 (2002). https://doi.org/10.1023/A:1023207921156

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023207921156

Navigation