Skip to main content
Log in

The Generalized Sturmian Method for Calculating Spectra of Atoms and Ions

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The properties of generalized Sturmian basis sets are reviewed, and functions of this type are used to perform direct configuration interaction calculations on the spectra of atoms and ions. Singlet excited states calculated in this way show good agreement with experimentally measured spectra. When the generalized Sturmian method is applied to atoms, the configurations are constructed from hydrogenlike atomic orbitals with an effective charge which is characteristic of the configuration. Thus, orthonormality between the orbitals of different configurations cannot be assumed, and the generalized Slater–Condon rules must be used. This aspect of the problem is discussed in detail. Finally spectra are calculated in the presence of a strong external electric field. In addition to the expected Stark effect, the calculated spectra exhibit anomalous states. These are shown to be states where one of the electrons is primarily outside the atom or ion, with only a small amplitude inside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Shull and P.O. Löwdin, J. Chem. Phys. 30 (1959) 617.

    Google Scholar 

  2. M. Rotenberg, Ann. Phys. (New York) 19 (1962) 62.

  3. M. Rotenberg, Adv. At. Mol. Phys. 6 (1970) 233–268.

    Google Scholar 

  4. V.A. Fock, Z. Phys. 98 (1935) 145.

    Google Scholar 

  5. V.A. Fock, Kgl. Norske Videnskab Forh. 31 (1958) 138.

    Google Scholar 

  6. M. Bandar and C. Itzyksen, Rev. Mod. Phys. 38 (1966) 330, 346.

    Article  Google Scholar 

  7. T. Shibuya and C.E. Wulfman, Proc. Roy. Soc. London Ser. A 286 (1965) 376.

    Google Scholar 

  8. C.E. Wulfman, Dynamical groups in atomic and molecular physics, in: Group Theory and Its Applications, ed. E.M. Loebel (Academic Press, New York, 1971).

    Google Scholar 

  9. B.R. Judd, Angular Momentum Theory for Diatomic Molecules (Academic Press, New York, 1975).

    Google Scholar 

  10. V. Aquilanti, S. Cavalli, D. De Fazio and G. Grossi, Hyperangular momentum: Applications to atomic and molecular science, in: New Methods in Quantum Theory, eds. C.A. Tsipis, V.S. Popov, D.R. Herschbach and J.S. Avery (Kluwer, Dordrecht, 1996).

    Google Scholar 

  11. V. Aquilanti, S. Cavalli, C. Coletti and G. Grossi, Chem. Phys. 209 (1996) 405.

    Article  Google Scholar 

  12. V. Aquilanti, S. Cavalli and C. Coletti, Chem. Phys. 214 (1977) 1.

    Article  Google Scholar 

  13. J. Avery and D.R. Herschbach, Int. J. Quant. Chem. 41 (1992) 673.

    Google Scholar 

  14. N.K. Vilenkin, Special Functions and the Theory of Group Representations (American Mathematical Society, Providence, RI, 1968).

    Google Scholar 

  15. J. Avery, Hyperspherical Harmonics; Applications in Quantum Theory (Kluwer Academic, Dordrecht, 1989).

    Google Scholar 

  16. J. Avery, Hyperspherical harmonics, some properties and applications, in: Conceptual Trends in Quantum Chemistry, Vol. 1, eds. E.S. Kryachko and J.L. Calais (Kluwer Academic, Dordrecht, Netherlands, 1994) pp. 135–169.

    Google Scholar 

  17. E.J. Weniger, J. Math. Phys. 26 (1985) 276.

    Article  Google Scholar 

  18. O. Goscinski, Preliminary research report No. 217, Quantum Chemistry Group, Uppsala University (1968).

  19. J. Avery, Hyperspherical Harmonics and Generalized Sturmians (Kluwer Academic, Dordrecht, Netherlands, 2000).

    Google Scholar 

  20. V. Aquilanti and J. Avery, Chem. Phys. Lett. 267 (1997) 1.

    Article  Google Scholar 

  21. J. Avery, J. Math. Chem. 21 (1997) 285.

    Article  Google Scholar 

  22. J. Avery and F. Antonsen, J. Math. Chem. 24 (1998) 175.

    Article  Google Scholar 

  23. J. Avery, Adv. Quantum Chem. 31 (1999) 201.

    Google Scholar 

  24. J. Avery, J. Mol. Struct. (Theochem) 458 (1999) 1.

    Article  Google Scholar 

  25. J. Avery and R. Shim, Int. J. Quant. Chem. 79 (2000) 1.

    Article  Google Scholar 

  26. J. Avery, J. Math. Chem. 24 (1998) 169.

    Article  Google Scholar 

  27. J. Avery and S. Sauer, Many-electron Sturmians applied to molecules, in: Quantum Systems in Chemistry and Physics, Vol. 1, eds. A. Hernández-Laguna, J. Maruani, R. McWeeney and S. Wilson (Kluwer Academic, 2000).

  28. J. Avery and R. Shim, Int. J. Quant. Chem. 83 (2000) 1.

    Article  Google Scholar 

  29. J. Avery, J. Math. Chem. 4 (2000) 279.

    Article  Google Scholar 

  30. V. Aquilanti and J. Avery, Adv. Quant. Chem. 39 (2001) 71.

    Google Scholar 

  31. P.O. Löwdin, Appl. Phys. Suppl. 33 (1962) 251.

    Google Scholar 

  32. A.T. Amos and G.G. Hall, Proc. Roy. Soc. London Ser. A 263 (1961) 483.

    Google Scholar 

  33. H.F. King, R.E. Stanton, H. Kim, R.E. Wyatt and R.G. Parr, J. Chem. Phys. 47 (1967) 1936.

    Google Scholar 

  34. R. McWeeny, Methods of Molecular Quantum Mechanics, 2nd edn. (Academic Press, New York, 1992) pp. 61–66.

    Google Scholar 

  35. S. Rettrup, Notes for the Course KV-KK Quantum Chemistry (Chemistry Department, University of Copenhagen, 2002).

  36. National Institute of Standards and Technology's Atomic Spectra Database, http://physics.nist.gov/asd

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avery, J., Avery, J. The Generalized Sturmian Method for Calculating Spectra of Atoms and Ions. Journal of Mathematical Chemistry 33, 145–162 (2003). https://doi.org/10.1023/A:1023204016217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023204016217

Keywords

Navigation