Skip to main content
Log in

Generalized Informational Entropy and Noncanonical Distribution in Equilibrium Statistical Mechanics

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Based on the Jaynes principle of maximum for informational entropy, we find a generalized probability distribution and construct a generalized equilibrium statistical mechanics (ESM) for a wide class of objects to which the usual (canonical) ESM cannot be applied. We consistently consider the case of a continuous, not discrete, random variable characterizing the state of the object. For large values of the argument, the resulting distribution is characterized by a power-law, not exponential, asymptotic behavior, and the corresponding power asymptotic expression agrees with the empirical laws established for these objects. The ε-deformed Boltzmann–Gibbs–Shannon functional satisfying the requirements of the entropy axiomatics and leading to the canonical ESM for ε = 0 is used as the original entropy functional. We also consider nonlinear transformations of this functional. We show that depending on how the averages of the dynamical characteristics of the object are defined, the different (Tsallis, Renyi, and Hardy–Littlewood–Pólya) versions of the generalized ESM can be used, and we give their comparative analysis. We find conditions under which the Gibbs–Helmholtz thermodynamic relations hold and the Legendre transformation can be applied to the generalized entropy and the Massieu–Planck function. We consider the Tsallis and Renyi ESM versions in detail for the case of a one-dimensional probabilistic object with a single dynamical characteristic whose role is played by a generalized positive “energy” with a monotonic power growth. We obtain constraints on the Renyi index under which the equilibrium distribution relates to a definite class of stable Gaussian or Levy–Khinchin distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, Springer, Berlin (1985).

    Google Scholar 

  2. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam (1984).

    Google Scholar 

  3. E. T. Jaynes, Phys. Rev., 106, 620 (1957); 108, 171 (1957).

    Google Scholar 

  4. D. N. Zubarev, Nonequilibruim Statistical Thermodynamics [in Russian], Nauka, Moscow (1971); English transl., Plenum, New York (1974).

    Google Scholar 

  5. V. M. Zolotarev, Stable Laws and Their Application [in Russian], Znanie, Moscow (1984).

    Google Scholar 

  6. M. Schroeder, Fractals, Chaos, Power Laws, Freeman, New York (1990).

    Google Scholar 

  7. B. A. Trubnikov, Priroda, No. 11, 3 (1993); No. 11, 48 (1995).

  8. A. A. Levich, Structure of Ecological Communities [in Russian], Moscow State Univ. Press, Moscow (1980); Biofizika, 42, 534 (1997).

    Google Scholar 

  9. W. M. Alberico, A. Lavagno, and P. Quarati, Eur. Phys. J. C, 12, 499 (2000).

    Google Scholar 

  10. G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett., 84, 2770 (2000).

    Google Scholar 

  11. A. I. Yablonskii, ed., Mathematical Methods in the Social Sciences [in Russian], Mysl', Moscow (1973).

    Google Scholar 

  12. C. Cherry, On Human Communication: A Review, a Survey, and a Criticism (2nd ed.), MIT Press, Cambridge, Mass. (1965).

    Google Scholar 

  13. A. I. Yablonskii, Mathematical Models in the Study of Science [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  14. R. L. Stratonovich, Information Theory [in Russian], Sovetskoe Radio, Moscow (1975).

    Google Scholar 

  15. E. W. Montroll and M. F. Shlesinger, J. Statist. Phys., 32, 209 (1983).

    Google Scholar 

  16. A. Renyi, Probability Theory, North-Holland, Amsterdam (1970).

    Google Scholar 

  17. C. Tsallis, J. Statist. Phys, 52, 479 (1988).

    Google Scholar 

  18. C. Tsallis, ed., Brazil J. Phys. (Special Issue: Nonextensive Statistical Mechanics and Thermodynamics), 29, No. 1 (1999).

    Google Scholar 

  19. S. Abe and Y. Okamoto, eds., Nonextensive Statistical Mechanics and Its Applications (Lect. Notes Phys., Vol. 560), Springer, Berlin (2001).

    Google Scholar 

  20. J. Aczel and Z. Daroczy, On Measures of Information and Their Characterization, Acad. Press, New York (1975).

    Google Scholar 

  21. G. Wehrl, Rev. Modern Phys., 50, 221 (1978).

    Google Scholar 

  22. C. Beck and F. Schlogl, Thermodynamics of Chaotic Systems, Cambridge Univ. Press, Cambridge (1992).

    Google Scholar 

  23. C. Shannon, Bell Syst. Tech., 27, 379, 623 (1948).

    Google Scholar 

  24. A. Ya. Khinchin, Uspekhi Mat. Nauk, 8, 3 (1953).

    Google Scholar 

  25. D. K. Faddeev, Uspekhi Mat. Nauk, 11, 227 (1956).

    Google Scholar 

  26. I. M. Gel'fand, A. N. Kolmogorov, and A. M. Yaglom, Dokl. Akad. Nauk SSSR, 111, 745 (1956).

    Google Scholar 

  27. E. S. Ventzel, Probability Theory [in Russian], Vyssh. Shkola, Moscow (1998).

    Google Scholar 

  28. Yu. V. Prokhorov, ed., Probability and Mathematical Statistics (Encyclopedia), Izdatel'stvo BRE, Moscow (1999).

    Google Scholar 

  29. L. D. Faddeev, Priroda, No. 5, 11 (1989).

  30. G. Parisi, J. Phys., 13, 1701 (1980).

    Google Scholar 

  31. P. T. Landsberg, J. Statist. Phys., 35, 159 (1984).

    Google Scholar 

  32. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge (1934).

    Google Scholar 

  33. L. Pietronero and E. Tosatti, eds., Fractals in Physics (Proc. 6th Trieste Intl. Symp. on Fractals in Physics, ICTP, Trieste, Italy, July 9-12, 1985), North-Holland, Amsterdam (1986).

    Google Scholar 

  34. A. G. Bashkirov and A. V. Vityazev, Phys. A, 277, 136 (2000).

    Google Scholar 

  35. A. G. Bashkirov and A. V. Vityazev, Planet Space Sci., 44, 909 (1996).

    Google Scholar 

  36. R. R. Nigmatullin, Theor. Math. Phys., 90, 242 (1992).

    Google Scholar 

  37. G. M. Zaslavsky, Phys. D, 76, 110 (1994).

    Google Scholar 

  38. A. D. Sukhanov and S. F. Timashev, Zh. Fiz. Khim., 72, 2088 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudoi, Y.G. Generalized Informational Entropy and Noncanonical Distribution in Equilibrium Statistical Mechanics. Theoretical and Mathematical Physics 135, 451–496 (2003). https://doi.org/10.1023/A:1023200618075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023200618075

Navigation