Skip to main content
Log in

New Layered Double Hydroxide, Zn–Ti LDH : Preparation and Intercalation Reactions

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The layered double hydroxide (LDH) well known for its abilityto intercalate anionic compounds has been prepared conventionallyonly with bivalent and trivalent cations. In this study, Zn–Ti LDH consisting of bivalent and tetravalent cations was prepared, andreacted with organic monocarboxylic, dicarboxylic and aromatic acidsat high or room temperature. XRD patterns of the prepared LDH(Zn–Ti-CO3) showed that interlayer spacing of the LDH was 0.67 nm. The value was small compared to the usual LDH (Zn–Al–CO3)of 0.76 nm in the case of carbonate anion as the guest. Also, DTA,TG and DTG analysis indicated that the electrostatic force betweenthe layers and carbonate anions increased where the carbonate anionsin Zn–Ti LDH decomposed at 255 °C while those inZn–Al–CO3 decomposed at 230–240 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cavani, F. Trifiro and A. Vaccari: Catal. Today 11, 173 (1991).

    Google Scholar 

  2. S.P. Newman and W. Jones: New J. Chem. 22, 105 (1998).

    Google Scholar 

  3. T. Takatsuka, H. Kawasaki, S. Yamashita and S. Kohjiya: Bull. Chem. Soc. Jpn. 52, 2449 (1979).

    Google Scholar 

  4. S. Kohjiya, T. Sato, T. Nakayama and S. Yamashita: Macromol. Rapid Commun. 2, 231 (1981).

    Google Scholar 

  5. W.T. Reichle: J. Catal. 94, 547 (1985).

    Google Scholar 

  6. E. Suzuki and Y. Ono: Bull. Chem. Soc. Jpn. 61, 1008 (1988).

    Google Scholar 

  7. H. Schaper, J.J. Berg-Slot and W.H.J. Stork: Appl. Catal. 54, 79(1989).

    Google Scholar 

  8. L. Barloy, J. P. Lallier, P. Battioni, D. Mansuy, Y. Piffard, M. Tournoux, J. B. Valim and W. Jones: New J. Chem. 16, 71 (1992).

    Google Scholar 

  9. P.C. Pavan, G.D. Gomes and J.B. Valim: Microporous Mesoporous Mater. 21, 659 (1998).

    Google Scholar 

  10. P.C. Pavan, E.L. Crepaldi, G.D. Gomes and J.B. Valim: Colloids Surf. A 154, 399 (1999).

    Google Scholar 

  11. S. Miyata and T. Kumura: Chem. Lett. 843 (1973).

  12. M. Meyn, K. Beneke and G. Lagaly: Inorg. Chem. 29, 5201 (1990).

    Google Scholar 

  13. A. Schmassmann, A. Tarnawski, B. Flogerzi, M. Sanner, L. Varga and F. Halter: Eur. J. Gastroenterol. Hepatol. 5, S111 (1993).

    Google Scholar 

  14. J. Choy, S. Kwak, J. Park, Y. Jeong and J. Portier: J. Am. Chem. Soc. 121, 1399 (1999).

    Google Scholar 

  15. A. Fogg, V. Green, H. Harvey and D. O'Hare: Adv. Mater. 11, 1466 (1999).

    Google Scholar 

  16. H. Tagaya, S. Ogata, S. Nakano, J. Kadokawa, M. Karasu and K. Chiba: J. Inclusion Phenomena 31, 231 (1998).

    Google Scholar 

  17. S. Ogata, H. Tagaya, M. Karasu, J. Kadokawa and K. Chiba: Trans. MRS-J. 24, 501 (1999).

    Google Scholar 

  18. S. Ogata, H. Tagaya, M. Karasu and J. Kadokawa: J.Mater. Chem. 10, 321 (2000).

    Google Scholar 

  19. T. Takahashi, H. Adachi, J. Kadokawa and H. Tagaya: Trans. Mater Res. Soc. Jpn. 26(2), 491 (2001).

    Google Scholar 

  20. H. Tagaya, S. Sato, T. Kuwahara, J. Kadokawa, M. Karasu and K. Chiba: J. Mater. Chem. 4, 1907 (1994).

    Google Scholar 

  21. H. Tagaya, A. Ogata, T. Kuwahara, S. Ogata, M. Karasu, J. Kadokawa and K. Chiba: Microporous Materials 7, 151 (1996).

    Google Scholar 

  22. H. Tagaya and S. Ogata: Function and Material 18, 33 (1998).

    Google Scholar 

  23. Shimadzu ESCA Data: ESCA 750.

  24. A. Roy, C. Forano, K. Elmalki and J. Besse: in M. L. Occelli and H. Robson (eds.), Expanded Clay and other Microporous Solids, Synthesis of Microporous Materials, V. Reinhold, New York, Ch. 7, p. 108 (1992).

    Google Scholar 

  25. V. Rives and S. Kannan: J. Mater. Chem. 10, 489 (2000).

    Google Scholar 

  26. M.C. Gastuche, G. Brown and M. Mortland, Clay Minerals 7, 72 (1967).

    Google Scholar 

  27. C. Busetto, G. Del Piero, and G. Manara: J. Catal. 85, 260 (1984).

    Google Scholar 

  28. R. Allmam and H.H. Lohse: N. Jhb. Miner. Mh. 6, 161 (1966).

    Google Scholar 

  29. F. Leroux, M. Adachi-Pagano, M. Intissar, S. Chauviere, C. Forano and J. Besse: J. Mater. Chem. 11, 105 (2001).

    Google Scholar 

  30. JCPDS file No. 20-1437.

  31. Constantino and T. Pinnavaia: Inorg. Chem. 34(4), 883 (1995).

    Google Scholar 

  32. S. Yun and T. Pinnavaia: Chem. Mater. 7, 348 (1995).

    Google Scholar 

  33. A. Vaccari: Appl. Clay Sci. 14, 161 (1999).

    Google Scholar 

  34. F.M. Labajos, V. Rives and M.A. Ulibarri: J. Mater. Sci. 27, 1546 (1992).

    Google Scholar 

  35. S. Miyata: Clays Clay Miner. 23, 369 (1995).

    Google Scholar 

  36. E.C. Kruissink, L.L. Van Reijden and J.R.H. Ross: J. Chem. Soc., Faraday Trans. 1 77, 649 (1991).

    Google Scholar 

  37. J. Perez-Ramirez, G. Mul, F. Kapteijn and J.A. Moulijn: J. Mater. Chem. 11, 821 (2001).

    Google Scholar 

  38. N. Nakamoto: Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn., John Wiley &; Sons, New York (1986).

    Google Scholar 

  39. M.K. Titulaer, J.B.H. Jansen and J.W. Geus: Clays Clay Miner. 42, 249 (1994).

    Google Scholar 

  40. T. Kanoh, T. Shichi and K. Takagi: Chem. Lett. 117 (1999).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saber, O., Tagaya, H. New Layered Double Hydroxide, Zn–Ti LDH : Preparation and Intercalation Reactions. Journal of Inclusion Phenomena 45, 107–115 (2003). https://doi.org/10.1023/A:1023078728942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023078728942

Navigation