Skip to main content
Log in

Multisymplectic Geometry, Local Conservation Laws and a Multisymplectic Integrator for the Zakharov–Kuznetsov Equation

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The multisymplectic geometry for the Zakharov–Kuznetsov equation is presented in this Letter. The multisymplectic form and the local energy and momentum conservation laws are derived directly from the variational principle. Based on the multisymplectic Hamiltonian formulation, we derive a 36-point multisymplectic integrator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betounes, D. E.: Extension of the classical Cartan form, Phys. Rev. D 29 (1984), 599–606.

    Google Scholar 

  2. Bridges, T. J.: Multi-symplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc. 121 (1997), 147–190.

    Google Scholar 

  3. Bridges, T. J.: A geometric formulation of the conservation of wave action and its implications for signature and the classification of instabilities, Proc. Royal. Soc. London A 453 (1997), 1365–1395.

    Google Scholar 

  4. Bridges, T. J.: Universal geometric condition for the transverse instability of solitary waves, Phys. Rev. Lett. 84 (2000), 2614–2617.

    Google Scholar 

  5. Bridges, T. J. and Reich, S.: Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A 284 (2001), 184–193.

    Google Scholar 

  6. Bridges, T. J. and Reich, S.: Multi-symplectic spectral discretizations for the Zakharov–Kuznetsov and shallow water equations, Physica D 152 (2001), 491–504.

    Google Scholar 

  7. Chen, J. B.: Total variation in discrete multisymplectic field theory and multisymplecticenergy-momentum integrators, Lett. Math. Phys. 61 (2002), 63–73.

    Google Scholar 

  8. Infeld, E., Skorupski, A. A. and Senatorski, A.: Dynamics of waves and multidimensional solitons of the Zakharov–Kuznetsov equation, J. Plasma Phys. 64 (2000), 397–409.

    Google Scholar 

  9. Iwasaki, S., Toh, and Kawahara, T.: Cylindrical qusi-solitons to the Zakharov–Kuznetsov equation, Physica D 43 (1990), 293–303.

    Google Scholar 

  10. Kouranbaeva, S. and Shkoller, S.: A variational approach to second-order multisymplectic field theory, preprint, (1999).

  11. Krupkova, O.: Hamiltonian field theory, J. Geom. Phys. 43 (2002), 93–132.

    Google Scholar 

  12. Marsden, J. E., Patrick, G. W. and Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys. 199 (1998), 351–395.

    Google Scholar 

  13. Olver, P. J.: Applications of Lie Groups to Differential Equations, 2nd edn, Springer, New York, 1993.

    Google Scholar 

  14. Reich, S.: Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys. 157 (2000), 473–499.

    Google Scholar 

  15. Zakharov, V. E. and Kuznetsov, E. A.: Three-dimensional solitons, Soviet. Phys. JEPT 39 (1974), 285–286.

    Google Scholar 

  16. Zhao, P. F. and Qin, M. Z.: Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation, J. Phys. A: Math, Gen. 33 (2000), 3613–3626.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JB. Multisymplectic Geometry, Local Conservation Laws and a Multisymplectic Integrator for the Zakharov–Kuznetsov Equation. Letters in Mathematical Physics 63, 115–124 (2003). https://doi.org/10.1023/A:1023067332646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023067332646

Navigation