Skip to main content
Log in

Conditions for Bounded Solutions of Non-Markovian Quantum Master Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For the most general quantum master equations, also called Nakajima–Zwanzig or non-Markovian equations, we define suitable boundedness conditions on integral kernels and inhomogeneity terms in order to derive with mathematical rigor an upper bound on solutions, as required by the von Neumann conditions. Such equations are of importance for quantum dynamics of open systems with arbitrary couplings to environment and arbitrary entangled initial states. The derivation is based on an equivalent coherence-vector representation in finite dimension n leading to coupled Volterra integro-differential equations of second kind and convolution type in an (n 2−1)-dimensional real vector space. As examples, analytical and numerical model solutions are worked out for 2-level systems in order to test suitable trial functions for input quantities. All this is motivated by the fact that exact solutions can hardly be found but appropriate trial functions may provide a reasonable semiphenomenological description of complicated quantum dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17:821(1976).

    Google Scholar 

  2. G. Lindblad, Commun. Math. Phys. 48:119(1976).

    Google Scholar 

  3. H. Spohn and J. L. Lebowitz, in Advances in Chemical Physics, Vol. 38, S. A. Rice, ed. (Wiley, New York, 1978).

    Google Scholar 

  4. R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics, Vol. 286 (Springer, Berlin, 1987).

    Google Scholar 

  5. F. Farhadmotamed, Entropy Production in Open Quantum Systems, Ph.D. thesis (University of Zürich, Zürich, 1998).

    Google Scholar 

  6. F. Farhadmotamed, A. J. van Wonderen, and K. Lendi, J. Phys. A: Math. Gen. 31:3395(1998).

    Google Scholar 

  7. S. Stenholm, Phys. Rep. 6:1(1973).

    Google Scholar 

  8. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Phys. Rev. Lett. 44:1323(1980).

    Google Scholar 

  9. A. J. van Wonderen, Phys. Rev. A 56:3116(1997).

    Google Scholar 

  10. R. Zwanzig, in Boulder Lectures in Theoretical Physics, Vol. III (Interscience, 1960), p. 106

  11. R. Zwanzig, J. Chem. Phys. 33:1338(1960).

    Google Scholar 

  12. J. Kupsch, Open quantum systems, in Decoherence and the Appearance of a Classical World in Quantum Theory, D. Giulini et al., eds. (Berlin, Springer, 1996).

    Google Scholar 

  13. A. Carrington and A. D. McLauchlan, Introduction to Magnetic Resonance (Harper & Row, New York, 1967).

    Google Scholar 

  14. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1986).

    Google Scholar 

  15. K. Lendi, J. Phys. A: Math. Gen. 20:15(1987).

    Google Scholar 

  16. A. Aissani, Sur la détion d'éue et sur l'étude d'une équation intégro-différentielle,Ph.D. thesis (University of Metz,Metz2000)

    Google Scholar 

  17. T. A. Burton, Volterra Integral and Differential Equations(Academic, New York, 1983).

    Google Scholar 

  18. P. H. M. Wolkenfelt, IMA J. Numer. Anal. 2:131(1982).

    Google Scholar 

  19. Ch. Lubich, IMA J. Numer. Anal. 3:439(1983).

    Google Scholar 

  20. L. F. Shampine, Math. Comp. 46:135(1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aissani, A., Lendi, K. Conditions for Bounded Solutions of Non-Markovian Quantum Master Equations. Journal of Statistical Physics 111, 1353–1362 (2003). https://doi.org/10.1023/A:1023064518885

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023064518885

Navigation