Skip to main content
Log in

Impact of Iron-Sulfide Deposits on Oxidized Austenitic Steels as Simulation of Corrosion and Fireside-Tube Wastage in Coal Combustion

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The sulfidation effect of molten iron sulfides was studied on oxidized austenitic steels as a simulation of furnace-wall corrosion in PC combustion environments. The test coupons were oxidized to produce an external oxide scale and pyrite was placed on the oxide and thermally treated in an inert atmosphere to decompose the pyrite into pyrrhotite. DSC-TGA and XRD indicated that FeS interacts with the Fe2O3 oxide layer, even at 700°C if the contact is good, changing the oxidation state of iron and the physical structure. On the other hand, the interaction of FeS with Cr2O3 between 1100 to 800°C, 24 hr in the inert atmosphere, consisted of the formation of a chromium sulfide layer beneath the oxide scale. SEM-EDX showed that the diffusion of sulfur in the steel matrix can be 30 μm deep, indicated by small particles of chromium sulfide. It is demonstrated that iron sulfide deposits could be responsible for sulfidation of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Dooley and P. S. Chang, Power Plant Chem. 2, 197(2000).

    Google Scholar 

  2. S. W. Banovic, J. N. DuPont, and A. R. Marder, Mater. High Temp. 16, 195(1999).

    Google Scholar 

  3. S. C. Kung and W. T. Bakker, NACE Corros. 2000, Paper 246, Orlando, Florida, 2000.

  4. A. K. Moza and L. G. Austin, Fuel 60, 1057(1981).

    Google Scholar 

  5. M. F. Abbot, A. K. Moza, and L. G. Austin, Fuel 60, 1065(1981).

    Google Scholar 

  6. M. C. Mayoral, M. T. Izquierdo, J. A. Andrés, and B. Rubio, Thermochim. Acta 390, 103(2002).

    Google Scholar 

  7. I. G. Wright, in ASM Metals Handbook, Vol.13 (Corrosion) (ASM, Materials Park, OH, 1992).

    Google Scholar 

  8. S. C. Kung and W. T. Bakker, Mater. High Temp. 14, 175(1997).

    Google Scholar 

  9. J. Pitter, J. Cizner, F. Cerny, M. A. Djouardi, and A. Koutsomichalis, Surf. Coat. Technol. 98, 1169(1998).

    Google Scholar 

  10. S. Seal, S. K. Bose, and S. K. Roy, Oxid. Met. 41, 139(1994).

    Google Scholar 

  11. V. Higuera Hidalgo, J. Belzunce Varela, A. Carriles Menendez, and S. Poveda Martinez, Wear 247, 214(2001).

    Google Scholar 

  12. R. Viswanathan, W. T. Bakker, and W. T. Power, Proc. General Conf. Power Fuels Combust. Technol. Nucl. Eng. (American Society of Mechanical Engineers, New York, 2000), pp. 377–398.

    Google Scholar 

  13. C. Fang, H. Yakuwa, M. Miyasaka, and T. Narita, Oxid. Met. 54, 173(2000).

    Google Scholar 

  14. M. C. Mayoral, M. T. Izquierdo, J. A. Andrés, and B. Rubio, Thermochim, Acta. 373, 173(2001).

    Google Scholar 

  15. S. Frangini, Oxid. Met. 53, 139(2000).

    Google Scholar 

  16. P. C. J. Graat, H. W. Zandbergen, M. A. J. Somers, and E. J. Mittemeijer, Oxid. Met. 53, 221(2000).

    Google Scholar 

  17. H. M. ten Brink, J. Eenkhoorn, and G. Hamburg, Fuel 78, 945(1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayoral, M., Izquierdo, M., Andrés, J. et al. Impact of Iron-Sulfide Deposits on Oxidized Austenitic Steels as Simulation of Corrosion and Fireside-Tube Wastage in Coal Combustion. Oxidation of Metals 59, 395–407 (2003). https://doi.org/10.1023/A:1023052313584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023052313584

Navigation