Skip to main content
Log in

Mechanism of Degradation of Titanium Alloy IMI 834 and Its Protection Under Hot Corrosion Conditions

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The excellent combination of high-temperature strength and lightweight properties makes titanium-base alloys attractive for high-temperature applications in aircraft engines. However, more hot corrosion of titanium alloys is a life-limiting factor, particularly when aircraft fly at low altitudes across the sea. In the present paper, an attempt has been made to understand the degradation mechanism of titanium alloy, IMI 834 under hot corrosion conditions at elevated temperatures. The hot corrosion studies were carried out by determining weight loss at different temperatures and in salts of pure Na2SO4, 90% Na2SO4+10% NaCl and 90% Na2SO4+5% NaCl+5% V2O5. Subsequently, the rate constants were evaluated. The depth of attack due to hot corrosion was compared with oxidation data. Finally, the degradation mechanism of the titanium alloy that leads to degradation of mechanical properties in aggressive environments has been discussed and suitable coatings suggested to enhance the operational life of engines by effectively preventing both oxidation and hot corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. R. Boyer, Adû. Performance Mater. 2, 349(1995).

    Google Scholar 

  2. G. Welsch, and A. I. Kahveci, in Oxidation of High Temperature Intermetallics, T. Grobstein, and J. Doychak, eds. (The Minerals, Metals & Materials, Warrandale, PA, 1989), pp. 207–218.

    Google Scholar 

  3. T. J. Johnson, M. H. Loretto, and M. W. Kearns, in Titanium 92, Science and Technology, F. H. Froes and I. Caplan, eds. (The Minerals, Metals & Materials, Warrendale, PA, 1993), pp. 2035–2042.

    Google Scholar 

  4. K. L. Luthra, Oxid. Met. 36, 274(1991).

    Google Scholar 

  5. R. A. Perkins, K. T. Chiang, and G. H. Meier, Scripta Met. 21, 1505(1987).

    Google Scholar 

  6. G. H. Meier and D. Appalonia, in Oxidation of High Temperature Intermetallics, T. Grobstein and J. Doychak, eds. (The Minerals, Metals & Materials, Warrendale, PA, 1989), pp. 185–193.

    Google Scholar 

  7. A. Rehmel and P. J. Spencer, Oxid. Met. 35, 53(1991).

    Google Scholar 

  8. I. Gurrappa and A. K. Gogia, Proc. 5th Nat. Conv. Corros. New Delhi, India, pp. 210–219 (1999).

  9. I. Gurrappa, Corros. Prev. Control 49, 79(2002).

    Google Scholar 

  10. I. Gurrappa and A. K. Gogia, Mater. Sci. Technol. 17, 581(2001).

    Google Scholar 

  11. I. Gurrappa, Oxid. Met. 51, 353(1999).

    Google Scholar 

  12. I. Gurrappa, Platinum Met. Rev. 45, 124(2001).

    Google Scholar 

  13. I. Gurrappa and A. K. Gogia, Surf. Coat Technol. 139, 216(2001).

    Google Scholar 

  14. I. Gurrappa, Oxid. Met. 51, 351(1999).

    Google Scholar 

  15. H. B. Bomberger, Titanium and Its Alloys, Source Book (American Society for Metals, 1982), p. 161.

  16. Z. Tang, F. Wang, and W. Wu, Oxid. Met. 51, 235(1999).

    Google Scholar 

  17. D. E. Piper and D. N. Fager, Special Tech. Publ. No. 397 (ASTM, Materials Park, OH, 1966), p. 31.

    Google Scholar 

  18. R. F. Simenz, J. M. Van Orden, and G. G. Wald, Spec. Tech. Publ. No. 297 (ASTM, Materials Park, OH, 1996), p. 53.

    Google Scholar 

  19. D. N. Braski, NASA TM X-1046 (1964).

  20. H. H. Uhlig, Mater. Prot. Performance 12, 42(1976).

    Google Scholar 

  21. R. S. Ondrejcin and M. R. Louthan, Jr., NASA CR-1133 (1968).

  22. S. P. Rideout, S. P. Louthan, and C. L. Selby, Spec. Tech. Publ. No. 397 (ASTM, Materials Park, OH, 1966), p. 137.

    Google Scholar 

  23. J. A. Little and S. V. Kumari, J. Mater. Sci. 33, 4315(1998).

    Google Scholar 

  24. H. L. Du, P. K. Datta, D. B. Lewisand, and J. S. Burrell-Gray, Mater. Sci. Eng. A205, 1999(1996).

    Google Scholar 

  25. P. Dumas and C. St. John, Titanium and Its Alloys, Scientific and Technological Aspects, Vol.2, J. C. Williams and A. M. Kelly, eds. (Plenum Press, New York, 1982), p. 987.

    Google Scholar 

  26. D. Singagia, G. Taccani, and B. Vicentine, Corros. Sci. 18, 781(1978).

    Google Scholar 

  27. M. W. Mahoney and A. S. Tetelman, Met. Trans. 7A, 1549(1976).

    Google Scholar 

  28. A. J. Sedriks, J. A. S. Green, and D. L. Novak, Corrosion 28, 137(1972).

    Google Scholar 

  29. G. W. Bauer, Phys. Metall. Symp., Watertown Arsenal, September, 1955.

  30. T. R. Beck, et al., Quart. Progr. Rept. No. 14, Contract NAS 7–489 (Boeing Sci. Res. Labs., 1969).

  31. Pratt and Whitney, TML Report 88, Battelle Memorial Institute, 1957.

  32. H. L. Logan, et al., Spec. Tech. Publ. No. 397 (ASTM Materials Park, OH, 1966), p. 215.

    Google Scholar 

  33. G. W. Goward, J. Mater. Sci. Technol. 2, 194(1986).

    Google Scholar 

  34. R. G. Wing and I. R. McGill, Platinum Met. Rev. 25, 94(1981).

    Google Scholar 

  35. G. Fisher, W. Y. Chan, P. K. Datta, and J. S. Burnell-Gray, Platinum Met. Rev. 43, 59(1999).

    Google Scholar 

  36. G. Fisher, P. K. Datta, J. S. Burnell-Gray, W. Y. Chan, and J. C. Soares, Surf. Coat. Technol. 110, 24(1998).

    Google Scholar 

  37. R. Bauer, K. Schreider, and H. W. Gunling, High Temp. Technol. 3, 59(1985).

    Google Scholar 

  38. W. T. Wu, A. Rehmel, and M. Schorr, Oxid. Met. 22, 59(1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurrappa, I. Mechanism of Degradation of Titanium Alloy IMI 834 and Its Protection Under Hot Corrosion Conditions. Oxidation of Metals 59, 321–322 (2003). https://doi.org/10.1023/A:1023044111767

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023044111767

Navigation