Abstract
Somatic embryogenesis through callus initiation has been quantified under salt stress conditions for 8 wheat cultivars currently cultivated in Morocco. The cultivars were classed according to the mean number of somatic embryos formed per immature embryo half and regenerated plants per 100 explants under saline conditions. Regenerated plants from control callus (R0–0) and callus initiated on 10 g l−1 NaCl (R0–10) did not show significant differences concerning plant height, spike length and grain number per ear but, the R0 plants remained less developed than parent plants. When watered with a solution containing more than 20 g l−1 NaCl, the seeds of cultivar Te derived from R0–10 regenerated plants exhibited the best elongation of roots and coleoptiles. Furthermore, a chlorophyll fluorescence test showed a clear improvement in salt tolerance of R0–10 plants at four to five-leaf stage, compared to R0–0 plants. It is concluded that plant regeneration from callus initiated on high NaCl levels may be a valid method of selection for salt tolerance.
This is a preview of subscription content, access via your institution.
References
Arzani A & Mirodjagh SS (1999) Response of durum wheat cultivars to immature embryo culture, callus induction and in vitro salt stress. Plant Cell Tiss. Org. Cult. 58: 67-72
Ashraf M & Oleary JW (1999) Changes in soluble proteins in spring wheat stressed with sodium chloride. Biol. Plant. 42: 113-117
Bajaj YPS (1990) Biotechnology in wheat breeding. In: Bajaj YPS (ed) Plant Biotechnology in Agriculture and Forestry, ''Wheat'' Vol. 13 (pp.2-18). Springer-Verlag, Heidelberg
Barakat MN & Abdel-Latif TH (1995) In vitro selection for salt tolerant lines in wheat. I. Effect of salt on the embryogenic cultures. Alexandria J. Agr. Res. 40: 77-95
Chlyah H, Karim R, Hsaïne M & Chlyah A (1990) Improvement of somatic embryogenesis in wheat by segmentation of cultured embryos. In: Bajaj YPS (ed) Plant Biotechnology in Agriculture and Forestry, ''Wheat'' Vol. 13 (pp. 88-97). Springer-Verlag, Heidelberg
Delporte F, Mostade O & Jacquemin JM (2001) Plant regeneration through callus initiation from thin embryo fragments of wheat. Plant Cell Tiss. Org. Cult. 67: 73-80
El-Hannawy MA (1996) Salt tolerance in wheat using tissue culture techniques. Ann. Agr. Sci. (Cairo) 41: 785-803
Gallé A, Csiszar J, Tari I & Erdei L (2002) Changes in water and chlorophyll fluorescence parameters under osmotic stress in wheat cultivars. Acta Biol. Szegediensis 46: 85-86
Havaux M, Ernez M & Lannoye R (1988) Selection de variétés de ble dur (Triticum durum Desf.) et de ble tendre (Triticum aestivum L.) adaptées à la sécheresse par la mesure de l'extinction de la chlorophylle in vivo. Agronomie 8: 193-199
Hsissou D & Bouharmont J (1994) In vitro selection and characterization of drought-tolerant plants of durum wheat (Triticum durum Desf.). Agronomie 14: 65-75
Karadimova K & Djambova G (1993) NaCl tolerance in wheat (Triticum aestivum L. and Triticum durum Desf.) through in vitro selection. In Vitro Cell. Dev. Biol. Plant 29: 180-182
Kintzios SE, Barberaki M, Aivalakis G, Drossopoulos J & Holevas CD (1997) In vitro morphogenetic responses of mature wheat embryos to different NaCl concentrations and growth regulator treatments. Plant Breed. 116: 113-118
KrishnaRaj S, Mawson BT, Yeung EC & Thorpe TA (1993) Utilization of induction and quenching kinetics of chlorophyll a for in vivo salinity screening studies in wheat (Triticum aestivum vars. Kharchi-65 and Filder). Can. J. Bot. 71: 87-92
Lutts S, Kinet JM & Bouharmont J (1997) NaCl impact on somaclonal variation exhibited by tissue culture derived fertile plants of rice (Oriza sativa L.) J. Plant Physiol. 152: 92-103
Lutts S, Kinet JM & Bouharmont J (1999) Improvement of rice callus regeneration in the presence of NaCl. Plant Cell Tiss. Org Cult. 57: 3-11
Magdy M, Mansour F, Lee-Stadelman OY & Stadelman EJ (1993) Salinity stress and cytoplasmic factors. A comparison of cell permeability and lipid partiality in salt sensitive and salt resistant cultivars and lines of Triticum aestivum and Hordeum vulgare. Physiol. Plant 88: 141-148
Mallek-Maleej E, Boulasnem F & Salem B (1998) Effet de la salinite sur la germination des gaines de céréales cultivées en Tunisie. Cahier d'agriculture 7: 153-156
Mattioni C, Lacerenza NG, Troccoli A, DeLeonardis AM & DiFonzo N (1997) Water and salt stress induced alterations in proline metabolism of Triticum durum seedlings. Physiol. Plant. 101: 787-792
Murashige T & Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15: 473-497
Nabors MW, Gibbs SE, Bernstein CS & Meis ME (1980) NaCl-tolerant tobacco plants from cultured cells. Z. Pflanzenphysiol. 97: 13-17
Nowakowska J (1998) Gene expression and oxalate oxidase activity of two germin isoforms induced by stress. Acta Physiol. Plant 20: 19-33
Pauk J, Ertugrul F, Bartok T, Mihaly R, Kiss O, Cseuz L & Dudits D (2002) Improvement of wheat abiotic stress resistance via genetic transformation. Acta Biol. Szegediensis 46: 5-7
Reddy JA & Vaidyanath K (1986) In vitro characterization of salt stress effects on the selection of salt tolerant plants in rice. Theor. Appl. Genet. 71: 757-760
Robinson DL, Dobrenz AK & Smith SE (1986) Evaluation of the genetic gains for germination salt tolerance in alfalfa using a NaCl gradient. Agron. J. 78: 1099-1103
Roxas VP, Lodhi SA, Garrett DK, Mahan JR & Randy DA (2000) Stress tolerance in transgenic tobacco seedlings that overexpress gluthathione S-transferase / glutathione peroxidase. Plant Cell Physiol. 41: 1229-1234
Rus AM, Rios S, Olmos E, Santa-Cruz A & Bolarin MC (2000) Long-term culture modifies the salt responses of callus lines of salt-tolerant and salt-sensitive tomato species. J. Plant Physiol. 157: 413-420
Sagi F, Beke B & Sagi L (1991) Somaclonal variation in Durum wheat (Triticum durum Desf ). In: Bajaj YPS (ed) Plant Biotechnology in Agriculture and Forestry ''Wheat'' Vol. 13 (pp.594-510). Springer-Verlag, Heidelberg
Santos CLV, Gomes S & Caldeira G (2000) Comparative responses of Helianthus annuus plant calli exposed to NaCl. II Selection of stable salt tolerant calli cell lines and evaluation of osmotic adjustment and morphogenic capacity. J. Plant Physiol. 156: 68-74
Shannon MC (1984) Breeding, selection and the genetics of salt tolerance. In: Salinity Tolerance in Plant Strategies for Crop Improvement (pp.231-354). John Wiley, New York
Sibi ML & Fakiri M (2000) Androgenèse et gynogenèse, source de vitrovariation et de tolérance à la salinité chez l'orge Hordeum vulgare? Sci. Changements Planétaires / Sécheresse 11: 125-132
Simon-Sarkadi L, Koesy G & Sebestyen Z (2002) Effect of salt stress on free amino acid and polyamine content in cereals. Acta Biol. Szegediensis 46: 73-75
Tang XX, Jia JF & Zheng CC (1999) Damage responses to salt stress in salt-tolerant cell lines of wheat. Acta Bot. 41: 757-760
Zacchini M, Marotta A & DeAgazio M (1997) Tolerance to salt stress in maize callus lines with different polyamine content. Plant Cell Rep. 17: 119-122
Zaïr I, Chlyah B & Chlyah H (1995) Effet de deux extraits biologiques sur l'embryogenèse somatique et sur la rétention des capacités de régénération chez les cals de blé Triticum aestivum). Can. J. Bot. 73: 498-504
Zaïr I, Chlyah B & Chlyah H (1996) Formes d'azote Favorables à la croissance, à l'embryogenèse et à la régéneration des cals de é (Triticum aestivum L.). Actes Inst. Agron. Vet. (Maroc) 16: 5-14
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zair, I., Chlyah, A., Sabounji, K. et al. Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell, Tissue and Organ Culture 73, 237–244 (2003). https://doi.org/10.1023/A:1023014328638
Issue Date:
DOI: https://doi.org/10.1023/A:1023014328638