Cancer and Metastasis Reviews

, Volume 22, Issue 2–3, pp 237–258 | Cite as

Membrane anchored serine proteases: A rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer

  • Sarah Netzel-Arnett
  • John D. Hooper
  • Roman Szabo
  • Edwin L. Madison
  • James P. Quigley
  • Thomas H. Bugge
  • Toni M. Antalis
Article

Abstract

Dysregulated proteolysis is a hallmark of cancer. Malignant cells require a range of proteolytic activities to enable growth, survival, and expansion. Serine proteases of the S1 or trypsin-like family have well recognized roles in the maintenance of normal homeostasis as well as in the pathology of diseases such as cancer. Recently a rapidly expanding subgroup of S1 proteases has been recognized that are directly anchored to plasma membranes. These membrane anchored serine proteases are anchored either via a carboxy-terminal transmembrane domain (Type I), a carboxy terminal hydrophobic region that functions as a signal for membrane attachment via a glycosyl-phosphatidylinositol linkage (GPI-anchored), or via an amino terminal proximal transmembrane domain (Type II or TTSP). The TTSPs also encode multiple domains in their stem regions that may function in regulatory interactions. The serine protease catalytic domains of these enzymes show high homology but also possess features indicating unique substrate specificities. It is likely that the membrane anchored serine proteases have evolved to perform complex functions in the regulation of cellular signaling events at the plasma membrane and within the extracellular matrix. Disruption or mutation of several of the genes encoding these proteases are associated with disease. Many of the membrane anchored serine proteases show restricted tissue distribution in normal cells, but their expression is widely dysregulated during tumor growth and progression. Diagnostic or therapeutic targeting of the membrane anchored serine proteases has potential as promising new approaches for the treatment of cancer and other diseases.

serine protease cancer transmembrane GPI anchor TTSP membrane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al: Initial sequencing andanalysis of the human genome. Nature 409: 860–921, 2001Google Scholar
  2. 2.
    Rawlings ND, Barrett AJ: Families of serine peptidases. Methods Enzymol 244: 19–61, 1994Google Scholar
  3. 3.
    Dano K, Romer J, Nielsen BS, Bjorn S, Pyke C, Rygaard J, LundLR: Cancer invasion andtissue remodeling-cooperation of protease systems andcell types. APMIS 107: 120–127, 1999Google Scholar
  4. 4.
    Johnsen M, LundLR, Romer J, Almholt K, Dano K: Cancer invasion andtissue remodeling: Common themes in proteolytic matrix degradation. Curr Opin Cell Biol 10: 667–671, 1998Google Scholar
  5. 5.
    de Vries TJ, van Muijen GN, Ruiter DJ: The plasminogen activation system in tumor invasion andmetastasis. Pathol Res Pract 192: 718–733, 1996Google Scholar
  6. 6.
    Rabbani SA, Mazar AP: The role of the plasminogen activation system in angiogenesis andmetastasis. Surg Oncol Clin N Am 10: 393–415, 2001Google Scholar
  7. 7.
    Kohn EC, Liotta LA: Molecular insights into cancer invasion: Strategies for prevention andinterventio n. Cancer Res 55: 1856–1862, 1995Google Scholar
  8. 8.
    Chen WT: Proteases associatedwith invadopodia, and their role in degradation of extracellular matrix. Enzyme Protein 49: 59–71, 1996Google Scholar
  9. 9.
    Hooper JD, Clements JA, Quigley JP, Antalis TM: Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 276: 857–860, 2001Google Scholar
  10. 10.
    Kitamoto Y, Veile RA, Donis-Keller H, Sadler JE: cDNA sequence andchromoso mal localization of human enterokinase, the proteolytic activator of trypsinogen. Biochemistry 34: 4562–4568, 1995Google Scholar
  11. 11.
    Kitamoto Y, Yuan X, Wu Q, McCourt DW, Sadler JE: Enterokinase, the initiator of intestinal digestion, is a mosaic protease composedof a distinctive assortment of domains. Proc Natl Acad Sci USA 91: 7588–7592, 1994Google Scholar
  12. 12.
    Tsuji A, Torres-Rosado A, Arai T, Le Beau MM, Lemons RS, Chou SH, Kurachi K: Hepsin, a cell membraneassociatedprotease. Characterization, tissue distribution, andgene localization. J Biol Chem 266: 16948–16953, 1991Google Scholar
  13. 13.
    Leytus SP, Loeb KR, Hagen FS, Kurachi K, Davie EW: A novel trypsin-like serine protease (hepsin) with a putative transmembrane domain expressed by human liver andhepatom a cells. Biochemistry 27: 1067–1074, 1988Google Scholar
  14. 14.
    Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE: Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, andSRCR domains andmaps to 21q22.3. Genomics 44: 309–320, 1997Google Scholar
  15. 15.
    Yamaoka K, Masuda K, Ogawa H, Takagi K, Umemoto N, Yasuoka S: Cloning andcharacteri zation of the cDNA for human airway trypsin-like protease. J Biol Chem 273: 11895–11901, 1998Google Scholar
  16. 16.
    Yan W, Sheng N, Seto M, Morser J, Wu Q: Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart. J Biol Chem 274: 14926–14935, 1999Google Scholar
  17. 17.
    Lin CY, Wang JK, Torri J, Dou L, Sang QA, Dickson RB: Characterization of a novel, membrane-bound, 80-kDa matrix-degrading protease from human breast cancer cells. Monoclonal antibody production, isolation, and localization. J Biol Chem 272: 9147–9152, 1997Google Scholar
  18. 18.
    Lin CY, Anders J, Johnson M, Sang QA, Dickson RB: Molecular cloning of cDNA for matriptase, a matrixdegrading serine protease with trypsin-like activity. J Biol Chem 274: 18231–18236, 1999Google Scholar
  19. 19.
    Takeuchi T, Shuman MA, Craik CS: Reverse biochemistry: Use of macromolecular protease inhibitors to dissect complex biological processes andid entify a membranetype serine protease in epithelial cancer andnormal tissue. Proc Natl AcadSci USA 96: 11054–11061, 1999Google Scholar
  20. 20.
    Underwood LJ, Shigemasa K, Tanimoto H, Beard JB, Schneider EN, Wang Y, Parmley TH, O'Brien TJ: Ovarian tumor cells express a novel multi-domain cell surface serine protease. Biochim Biophys Acta 1502: 337–350, 2000Google Scholar
  21. 21.
    Wallrapp C, Hahnel S, Muller-Pillasch F, Burghardt B, Iwamura T, Ruthenburger M, Lerch MM, Adler G, Gress TM: A novel transmembrane serine protease (TMPRSS3) overexpressedin pancreatic cancer. Cancer Res 60: 2602–2606, 2000Google Scholar
  22. 22.
    Yamaguchi N, Okui A, Yamada T, Nakazato H, Mitsui S: Spinesin/TMPRSS5, a novel transmembrane serine protease, clonedfrom human spinal cord. J Biol Chem 277: 6806–6812, 2002Google Scholar
  23. 23.
    Lang JC, Schuller DE: Differential expression of a novel serine protease homologue in squamous cell carcinoma of the headandneck. Br J Cancer 84: 237–243, 2001Google Scholar
  24. 24.
    Velasco G, Cal S, Quesada V, Sanchez LM, Lopez-Otin C: Matriptase-2, a membrane-boundmosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. J Biol Chem 277: 37637–37646, 2002Google Scholar
  25. 25.
    Yasuoka S, Ohnishi T, Kawano S, Tsuchihashi S, Ogawara M, Masuda K, Yamaoka K, Takahashi M, Sano T: Purification, characterization, andlocalizat ion of a novel trypsin-like protease foundin the human airway. Am J Respir Cell Mol Biol 16: 300–308, 1997Google Scholar
  26. 26.
    Yu JX, Chao L, Chao J: Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, andlocalization in prostate gland. J Biol Chem 269: 18843–18848, 1994Google Scholar
  27. 27.
    Yu JX, Chao L, Chao J: Molecular cloning, tissue-specific expression, andcellular localization of human prostasin mRNA. J Biol Chem 270: 13483–13489, 1995Google Scholar
  28. 28.
    Chen LM, Skinner ML, Kauffman SW, Chao J, Chao L, Thaler CD, Chai KX: Prostasin is a glycosylphosphatidylinositol-anchored active serine protease. J Biol Chem 276: 21434–21442, 2001Google Scholar
  29. 29.
    Hooper JD, Nicol DL, Dickinson JL, Eyre HJ, Scarman AL, Normyle JF, Stuttgen MA, Douglas ML, Loveland KA, SutherlandGR, Antalis TM: Testisin, a new human serine proteinase expressedby premeiotic testicular germ cells andlost in testicular germ cell tumors. Cancer Res 59: 3199–3205, 1999Google Scholar
  30. 30.
    Shaw-Smith CJ, Coffey AJ, Leversha M, Freeman TC, Bentley DR, Walters JR: Characterisation of a novel murine intestinal serine protease, DISP. Biochim Biophys Acta 1490: 131–136, 2000Google Scholar
  31. 31.
    Kohno N, Yamagata K, Yamada S, Kashiwabara S, Sakai Y, Baba T: Two novel testicular serine proteases, TESP1 andTESP2, are present in the mouse sperm acrosome. Biochem Biophys Res Commun 245: 658–665, 1998Google Scholar
  32. 32.
    Caughey GH, RaymondWW, Blount JL, Hau LW, Pallaoro M, Wolters PJ, Verghese GM: Characterization of human gamma-tryptases, novel members of the Membrane anchoredserine proteases 253 chromosome 16p mast cell tryptase andprostasin gene families. J Immunol 164: 6566–6575, 2000Google Scholar
  33. 33.
    Wong GW, Tang Y, Stevens RL: Cloning of the human homolog of mouse transmembrane tryptase. Int Arch Allergy Immunol 118: 419–421, 1999Google Scholar
  34. 34.
    Wong GW, Tang Y, Feyfant E, Sali A, Li L, Li Y, Huang C, FriendDS, Krilis SA, Stevens RL: Identification of a new member of the tryptase family of mouse andhuman mast cell proteases which possesses a novel COOHterminal hydrophobic extension. J Biol Chem 274: 30784–30793, 1999Google Scholar
  35. 35.
    Seiki M: Membrane-type matrix metalloproteinases. APMIS 107: 137–143, 1999Google Scholar
  36. 36.
    Itoh Y, Kajita M, Kinoh H, Mori H, Okada A, Seiki M: Membrane type 4 matrix metalloproteinase (MT4-MMP, MMP-17) is a glycosylphosphatidylinositol-anchored proteinase. J Biol Chem 274: 34260–34266, 1999Google Scholar
  37. 37.
    Appel LF, Prout M, Abu-Shumays R, Hammonds A, Garbe JC, Fristrom D, Fristrom J: The Drosophila Stubble-stubbloidgene encodes an apparent transmembrane serine protease requiredfor epithelial morphogenesis. Proc Natl AcadSci USA 90: 4937–4941, 1993Google Scholar
  38. 38.
    Yamada K, Takabatake T, Takeshima K: Isolation and characterization of three novel serine protease genes from Xenopus laevis. Gene 252: 209–216, 2000Google Scholar
  39. 39.
    Yamada K, Takabatake Y, Takabatake T, Takeshima K: The early expression control of Xepsin by nonaxial and planar posteriorizing signals in Xenopus epidermis. Dev Biol 214: 318–330, 1999Google Scholar
  40. 40.
    Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC: An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature 389: 607–610, 1997Google Scholar
  41. 41.
    Vallet V, Pfister C, Loffing J, Rossier BC: Cell-surface expression of the channel activating protease xCAP-1 is requiredfor activation of ENaC in the Xenopus oocyte. J Am Soc Nephrol 13: 588–594, 2002Google Scholar
  42. 42.
    Honda A, Yamagata K, Sugiura S, Watanabe K, Baba T: A mouse serine protease TESP5 is selectively included into lipidrafts of sperm membrane presumably as a glycosylphosphatidylinositol-anchored protein. J Biol Chem 277: 16976–16984, 2002Google Scholar
  43. 43.
    Wong GW, Foster PS, Yasuda S, Qi JC, Mahalingam S, Mellor EA, Katsoulotos G, Li L, Boyce JA, Krilis SA, Stevens RL: Biochemical andfunctiona l characterization of human transmembrane tryptase (TMT)/tryptase γy. TMT is an exocytosedmast cell protease that induces airway hyperresponsiveness in vivo via an IL-13/IL-4Rαa/ STST6-dependent pathway. J Biol Chem 277: 41906–41915, 2002Google Scholar
  44. 44.
    Zheng X, Lu D, Sadler JE: Apical sorting of bovine enteropeptidase does not involve detergent-resistant association with sphingolipid-cholesterol rafts. J Biol Chem 274: 1596–1605, 1999Google Scholar
  45. 45.
    Kazama Y, Hamamoto T, Foster DC, Kisiel W: Hepsin, a putative membrane-associatedserine protease, activates human factor VII andinitiates a pathway of blood coagulation on the cell surface leading to thrombin formation. J Biol Chem 270: 66–72, 1995Google Scholar
  46. 46.
    Zacharski LR, Ornstein DL, Memoli VA, Rousseau SM, Kisiel W: Expression of the factor VII activating protease, hepsin, in situ in renal cell carcinoma. Thromb Haemost 79: 876–877, 1998Google Scholar
  47. 47.
    Lin CY, Anders J, Johnson M, Dickson RB: Purification andcharacteri zation of a complex containing matriptase anda Kunitz-type serine protease inhibitor from human milk. J Biol Chem 274: 18237–18242, 1999Google Scholar
  48. 48.
    Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS: Cellular localization of membrane-type serine protease 1 andid entification of protease-activatedreceptor-2 andsingle-c hain urokinase-type plasminogen activator as substrates. J Biol Chem 275: 26333–26342, 2000Google Scholar
  49. 49.
    Jacquinet E, Rao NV, Rao GV, Hoidal JR: Cloning, genomic organization, chromosomal assignment and expression of a novel mosaic serine proteinase: Epitheliasin. FEBS Lett 468: 93–100, 2000Google Scholar
  50. 50.
    Yan W, Wu F, Morser J, Wu Q: Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci USA 97: 8525–8529, 2000Google Scholar
  51. 51.
    Hooper JD, Scarman AL, Clarke BE, Normyle JF, Antalis TM: Localization of the mosaic transmembrane serine protease corin to heart myocytes. Eur J Biochem 267: 6931–6937, 2000Google Scholar
  52. 52.
    Takeda J, Kinoshita T: GPI-anchor biosynthesis. Trends Biochem Sci 20: 367–371, 1995Google Scholar
  53. 53.
    Simons K, Ikonen E: Functional rafts in cell membranes. Nature 387: 569–572, 1997Google Scholar
  54. 54.
    Brown DA, London E: Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14: 111–136, 1998Google Scholar
  55. 55.
    Sevlever D, Pickett S, Mann KJ, Sambamurti K, Medof ME, Rosenberry TL: Glycosylphosphatidylinositolanchor intermediates associate with triton-insoluble membranes in subcellular compartments that include the endoplasmic reticulum. Biochem J 343 Pt 3: 627–635, 1999Google Scholar
  56. 56.
    Keller P, Simons K: Post-Golgi biosynthetic trafficking. J Cell Sci 110 ( Pt 24): 3001–3009, 1997Google Scholar
  57. 57.
    Satomi S, Yamasaki Y, Tsuzuki S, Hitomi Y, Iwanaga T, Fushiki T: A role for membrane-type serine protease (MTSP1) in intestinal epithelial turnover. Biochem Biophys Res Commun 287: 995–1002, 2001Google Scholar
  58. 58.
    Lu D, Yuan X, Zheng X, Sadler JE: Bovine proenteropeptidase is activated by trypsin, and the specificity of enteropeptidase depends on the heavy chain. J Biol Chem 272: 31293–31300, 1997Google Scholar
  59. 59.
    Zheng X, Sadler JE: Mucin-like domain of enteropeptidase directs apical targeting in Madin-Darby canine kidney cells. J Biol Chem 277: 6858–6863, 2002Google Scholar
  60. 60.
    Brown MS, Herz J, Goldstein JL: LDL-receptor structure. Calcium cages, acidbaths and recycling receptors. Nature 388: 629–630, 1997Google Scholar
  61. 61.
    Kounnas MZ, Church FC, Argraves WS, Strickland DK: Cellular internalization and degradation of antithrombin III-thrombin, heparin cofactor II-thrombin, andalpha 1-antitrypsin-trypsin complexes is mediated by the low density lipoprotein receptor-related protein. J Biol Chem 271: 6523–6529, 1996Google Scholar
  62. 62.
    Nykjaer A, Conese M, Christensen EI, Olson D, Cremona O, Gliemann J, Blasi F: Recycling of the urokinase receptor upon internalization of the uPA:Serpin complexes. EMBO J 16: 2610–2620, 1997Google Scholar
  63. 63.
    Tomita Y, Kim DH, Magoori K, Fujino T, Yamamoto TT: A novel low-density lipoprotein receptor-related protein with type II membrane protein-like structure is abundant in heart. J Biochem (Tokyo) 124: 784–789, 1998Google Scholar
  64. 64.
    Resnick D, Chatterton JE, Schwartz K, Slayter H, Krieger M: Structures of class A macrophage scavenger receptors. Electron microscopic study of flexible, multidomain, fibrous proteins and determination of the disulfide bond pattern of the scavenger receptor cysteine-rich domain. J Biol Chem 271: 26924–26930, 1996Google Scholar
  65. 65.
    Yun KS, Park D, Oh M, Sellamuthu S, Park WJ: Detection of site-specific proteolysis in secretory pathways. Biochem Biophys Res Commun 296: 419–424, 2002Google Scholar
  66. 66.
    Bork P, Beckmann G: The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol 231: 539–545, 1993Google Scholar
  67. 67.
    Hynes RO: Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25, 1992Google Scholar
  68. 68.
    Bork P, Patthy L: The SEA module: A new extracellular domain associated with O-glycosylation. Protein Sci 4: 1421–1425, 1995Google Scholar
  69. 69.
    Beckmann G, Bork P: An adhesive domain detected in functionally diverse receptors. Trends Biochem Sci 18: 40–41, 1993Google Scholar
  70. 70.
    Cadigan KM, Nusse R: Wnt signaling: A common theme in animal development. Genes Dev 11: 3286–3305, 1997Google Scholar
  71. 71.
    Schechter I, Berger A: On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27: 157–162, 1967Google Scholar
  72. 72.
    Lu D, Futterer K, Korolev S, Zheng X, Tan K, Waksman G, Sadler JE: Crystal structure of enteropeptidase light chain complexedwith an analog of the trypsinogen activation peptide. J Mol Biol 292: 361–373, 1999Google Scholar
  73. 73.
    Friedrich R, Fuentes-Prior P, Ong E, Coombs G, Hunter M, Oehler R, Pierson D, Gonzalez R, Huber R, Bode W, Madison EL: Catalytic domain structures of MT-SP1/ matriptase, a matrix-degrading transmembrane serine proteinase. J Biol Chem 277: 2160–2168, 2002Google Scholar
  74. 74.
    Yuan L, Shan J, De Risi D, Broome J, Lovecchio J, Gal D, Vinciguerra V, Xu HP: Isolation of a novel gene, TSP50, by a hypomethylatedDNA fragment in human breast cancer. Cancer Res 59: 3215–3221, 1999Google Scholar
  75. 75.
    Perona JJ, Craik CS: Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J Biol Chem 272: 29987–29990, 1997Google Scholar
  76. 76.
    Coombs GS, Dang AT, Madison EL, Corey DR: Distinct mechanisms contribute to stringent substrate specificity of tissue-type plasminogen activator. J Biol Chem 271: 4461–4467, 1996Google Scholar
  77. 77.
    Bode W, Turk D, Karshikov A: The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketoneinhibitedhuman alpha-thrombin: Structure analysis, overall structure, electrostatic properties, detailed activesite geometry, andstructure-functio n relationships. Protein Sci 1: 426–471, 1992Google Scholar
  78. 78.
    Vu TK, Liu RW, Haaksma CJ, Tomasek JJ, Howard EW: Identification and cloning of the membrane-associated serine protease, hepsin, from mouse preimplantation embryos. J Biol Chem 272: 31315–31320, 1997Google Scholar
  79. 79.
    Kawamura S, Kurachi S, Deyashiki Y, Kurachi K: Complete nucleotide sequence, origin of isoform and functional characterization of the mouse hepsin gene. Eur J Biochem 262: 755–764, 1999Google Scholar
  80. 80.
    Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, Dickson RB: Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 53: 1409–1415, 1993Google Scholar
  81. 81.
    Cao J, Zheng S, Zheng L, Cai X, Zhang Y, Geng L, Fang Y: A novel serine protease SNC19 associatedwith human colorectal cancer. Chin MedJ (Engl ) 114: 726–730, 2001Google Scholar
  82. 82.
    Yu JX, Chao L, WardDC, Chao J: Structure and chromosomal localization of the human prostasin (PRSS8) gene. Genomics 32: 334–340, 1996Google Scholar
  83. 83.
    Wong GW, Yasuda S, Madhusudhan MS, Li L, Yang Y, Krilis SA, Sali A, Stevens RL: Human tryptase epsilon (PRSS22), a new member of the chromosome 16p13.3 family of human serine proteases expressedin airway epithelial cells. J Biol Chem 276: 49169–49182, 2001Google Scholar
  84. 84.
    Nelson JE, Krawetz SA: Characterization of a human locus in transition. J Biol Chem 269: 31067–31073, 1994Google Scholar
  85. 85.
    Callen DF, Lane SA, Kozman H, Kremmidiotis G, Whitmore SA, Lowenstein M, Doggett NA, Kenmochi N, Page DC, Maglott DR: Integration of transcript and genetic maps of chromosome 16 at near-1-Mb resolution: Demonstration of a “hot spot” for recombination at 16p12. Genomics 29: 503–511, 1995Google Scholar
  86. 86.
    Marlton P, Claxton DF, Liu P, Estey EH, Beran M, LeBeau M, Testa JR, Collins FS, Rowley JD, Siciliano MJ: Molecular characterization of 16p deletions associatedwith inversion 16 defines the critical fusion for leukemogenesis. Blood 85: 772–779, 1995Google Scholar
  87. 87.
    Wilkie AO, Lamb J, Harris PC, Finney RD, Higgs DR: A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature 346: 868–871, 1990Google Scholar
  88. 88.
    Scarman AL, Hooper JD, Boucaut KJ, Sit ML, Webb GC, Normyle JF, Antalis TM: Organization andchromosomal localization of the murine Testisin gene encoding a serine protease temporally expressed during permatogenesis. Eur J Biochem 268: 1250–1258, 2001Google Scholar
  89. 89.
    Masmoudi S, Antonarakis SE, Schwede T, Ghorbel AM, Gratri M, Pappasavas MP, Drira M, Elgaied-Boulila A, Wattenhofer M, Rossier C, Scott HS, Ayadi H, Guipponi M: Novel missense mutations of TMPRSS3 in two consanguineous Tunisian families with non-syndromic autosomal recessive deafness. Hum Mutat 18: 101–108, 2001Google Scholar
  90. 90.
    Moroz SP, Hadorn B, Rossi TM, Haworth JC: Celiac disease in a patient with a congenital deficiency of intestinal enteropeptidase. Am J Gastroenterol 96: 2251–2254, 2001Google Scholar
  91. 91.
    Holzinger A, Maier EM, Buck C, Mayerhofer PU, Kappler M, Haworth JC, Moroz SP, Hadorn HB, Sadler JE, Roscher AA: Mutations in the proenteropeptidase gene are the molecular cause of congenital enteropeptidase deficiency. Am J Hum Genet 70: 20–25, 2002Google Scholar
  92. 92.
    Scott HS, Kudoh J, Wattenhofer M, Shibuya K, Berry A, Chrast R, Guipponi M, Wang J, Kawasaki K, Asakawa S, Minoshima S, Younus F, Mehdi SQ, Radhakrishna U, Papasavvas MP, Gehrig C, Rossier C, Korostishevsky M, Gal A, Shimizu N, Bonne-Tamir B, Antonarakis SE: Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital andchild hoodonset autosomal recessive deafness. Nat Genet 27: 59–63, 2001Google Scholar
  93. 93.
    Ben Yosef T, Wattenhofer M, Riazuddin S, Ahmed ZM, Scott HS, Kudoh J, Shibuya K, Antonarakis SE, Bonne-Tamir B, Radhakrishna U, Naz S, Ahmed Z, Riazuddin S, Pandya A, Nance WE, Wilcox ER, Friedman TB, Morell RJ: Novel mutations of TMPRSS3 in four DFNB8/B10 families segregating congenital autosomal recessive deafness. J MedGenet 38: 396–400, 2001Google Scholar
  94. 94.
    Wattenhofer M, Dil, V, Rabionet R, Dougherty L, Pampanos A, Schwede T, Montserrat-Sentis B, Arbones L, Iliades T, Pasquadibisceglie A, D'Amelio M, Alwan S, Rossier C, Dahl HH, Petersen MB, Estivill X, Gasparini P, Scott HS, Antonarakis SE: Mutations in the TMPRSS3 gene are a rare cause of childhood nonsyndromic deafness in Caucasian patients. J Mol Med80: 124–131, 2002Google Scholar
  95. 95.
    Kim DR, Sharmin S, Inoue M, Kido H: Cloning and expression of novel mosaic serine proteases with and without a transmembrane domain from human lung. Biochim Biophys Acta 1518: 204–209, 2001Google Scholar
  96. 96.
    Hooper JD, Bowen N, Marshall H, Cullen LM, SoodR, Daniels R, Stuttgen MA, Normyle JF, Higgs DR, Kastner DL, Ogbourne SM, Pera MF, Jazwinska EC, Antalis TM: Localization, expression andgenomic structure of the gene encoding the human serine protease testisin. Biochim Biophys Acta 1492: 63–71, 2000Google Scholar
  97. 97.
    Inoue M, Isobe M, Itoyama T, Kido H: Structural analysis of esp-1 gene (PRSS 21). Biochem Biophys Res Commun 266: 564–568, 1999Google Scholar
  98. 98.
    Yuan X, Zheng X, Lu D, Rubin DC, Pung CY, Sadler JE: Structure of murine enterokinase (enteropeptidase) and expression in small intestine during development. Am J Physiol 274: G342-G349, 1998Google Scholar
  99. 99.
    Takahashi M, Sano T, Yamaoka K, Kamimura T, Umemoto N, Nishitani H, Yasuoka S: Localization of human airway trypsin-like protease in the airway: An immunohistochemical study. Histochem Cell Biol 115: 181–187, 2001Google Scholar
  100. 100.
    Lin B, Ferguson C, White JT, Wang S, Vessella R, True LD, HoodL, Nelson PS: Prostate-localizedand androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res 59: 4180–4184, 1999Google Scholar
  101. 101.
    Vaarala MH, Porvari KS, Kellokumpu S, Kyllonen AP, Vihko PT: Expression of transmembrane serine protease TMPRSS2 in mouse andhuman tissues. J Pathol 193: 134–140, 2001Google Scholar
  102. 102.
    Donaldson SH, Hirsh A, Li DC, Holloway G, Chao J, Boucher RC, Gabriel SE: Regulation of the epithelial sodium channel by serine proteases in human airways. J Biol Chem 277: 8338–8345, 2002Google Scholar
  103. 103.
    Oberst MD, Johnson MD, Dickson RB, Lin CY, Singh B, Stewart M, Williams A, al Nafussi A, Smyth JF, Gabra H, Sellar GC: Expression of the serine protease matriptase andits inhibitor HAI-1 in epithelial ovarian cancer: Correlation with clinical outcome andtumor clinicopathological parameters. Clin Cancer Res 8: 1101–1107, 2002Google Scholar
  104. 104.
    Afar DE, Vivanco I, Hubert RS, Kuo J, Chen E, Saffran DC, Raitano AB, Jakobovits A: Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate andprostate cancer epithelia. Cancer Res 61: 1686–1692, 2001Google Scholar
  105. 105.
    Irving P, Troxler L, Heuer TS, Belvin M, Kopczynski C, Reichhart JM, Hoffmann JA, Hetru C: A genome-wide analysis of immune responses in Drosophila. Proc Natl AcadSci USA 98: 15119–15124, 2001Google Scholar
  106. 106.
    Narikiyo T, Kitamura K, Adachi M, Miyoshi T, Iwashita K, Shiraishi N, Nonoguchi H, Chen LM, Chai KX, Chao J, Tomita K: Regulation of prostasin by aldosterone in the kidney. J Clin Invest 109: 401–408, 2002Google Scholar
  107. 107.
    Pan J, Hinzmann B, Yan W, Wu F, Morser J, Wu W: Human andmurine corin genes: Genomic structures and functional GATA elements in their promoters. J Biol Chem 277: 38390–38398, 2002Google Scholar
  108. 108.
    Morii E, Ogihara H, Oboki K, Kataoka TR, Jippo T, Kitamura Y: Effect of MITF on transcription of trans-membrane tryptase gene in culturedmast cells of mice. Biochem Biophys Res Commun 289: 1243–1246, 2001Google Scholar
  109. 109.
    Inoue M, Kanbe N, Kurosawa M, Kido H: Cloning and tissue distribution of a novel serine protease esp-1 from human eosinophils. Biochem Biophys Res Commun 252: 307–312, 1998Google Scholar
  110. 110.
    Chen LM, Chai KX: Prostasin serine protease inhibits breast cancer invasiveness andis transcriptionally regulatedby promoter DNA methylation. Int J Cancer 97: 323–329, 2002Google Scholar
  111. 111.
    Adachi M, Kitamura K, Miyoshi T, Narikiyo T, Iwashita K, Shiraishi N, Nonoguchi H, Tomita K: Activation of epithelial sodium channels by prostasin in Xenopus oocytes. J Am Soc Nephrol 12: 1114–1121, 2001Google Scholar
  112. 112.
    Liu L, Hering-Smith KS, Schiro FR, Hamm LL: Serine protease activity in m-1 cortical collecting duct cells. Hypertension 39: 860–864, 2002Google Scholar
  113. 113.
    Zamolodchikova TS, Sokolova EA, Lu D, Sadler JE: Activation of recombinant proenteropeptidase by duodenase. FEBS Lett 466: 295–299, 2000Google Scholar
  114. 114.
    Lee SL, Dickson RB, Lin CY: Activation of hepatocyte growth factor andurokinase/p lasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 275: 36720–36725, 2000Google Scholar
  115. 115.
    BenaudC, Dickson RB, Lin CY: Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor. Eur J Biochem 268: 1439–1447, 2001Google Scholar
  116. 116.
    BenaudC, Oberst M, Hobson JP, Spiegel S, Dickson RB, Lin CY: Sphingosine 1-phosphate, present in serumderived lipoproteins, activates matriptase. J Biol Chem 277: 10539–10546, 2002Google Scholar
  117. 117.
    List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W, Engelholm LH, Behrendt N, Bugge TH: Matriptase/MT-SP1 is requiredfor postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21: 3765–3779, 2002Google Scholar
  118. 118.
    Kim MG, Chen C, Lyu MS, Cho EG, Park D, Kozak C, Schwartz RH: Cloning andchromoso mal mapping of a gene isolatedfrom thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics 49: 420–428, 1999Google Scholar
  119. 119.
    Wu F, Yan W, Pan J, Morser J, Wu Q: Processing of proatrial natriuretic peptide by corin in cardiac myocytes. J Biol Chem 277: 16900–16905, 2002Google Scholar
  120. 120.
    Bicknell AB, Lomthaisong K, Woods RJ, Hutchinson EG, Bennett HP, Gladwell RT, Lowry PJ: Characterization of a serine protease that cleaves pro-gammamelanotropin at the adrenal to stimulate growth. Cell 105: 903–912, 2001Google Scholar
  121. 121.
    Vuagniaux G, Vallet V, Jaeger NF, Hummler E, Rossier BC: Synergistic activation of ENaC by three membraneboundchannel-activating serine proteases (mCAP1, mCAP2, andmCAP3) andserum-and glucocorticoidregulatedkinase (Sgk 1) in Xenopus Oocytes. J Gen Physiol 120: 191–201, 2002Google Scholar
  122. 122.
    Torres-Rosado A, O'shea KS, Tsuji A, Chou SH, Kurachi K: Hepsin, a putative cell-surface serine protease, is requiredfor mammalian cell growth. Proc Natl Acad Sci USA 90: 7181–7185, 1993Google Scholar
  123. 123.
    Matsushima M, Ichinose M, Yahagi N, Kakei N, Tsukada S, Miki K, Kurokawa K, Tashiro K, Shiokawa K, Shinomiya K: Structural characterization of porcine enteropeptidase. J Biol Chem 269: 19976–19982, 1994Google Scholar
  124. 124.
    Wu Q, Yu D, Post J, Halks-Miller M, Sadler JE, Morser J: Generation andcharacteri zation of mice deficient in hepsin, a hepatic transmembrane serine protease. J Clin Invest 101: 321–326, 1998Google Scholar
  125. 125.
    Oberst M, Anders J, Xie B, Singh B, Ossandon M, Johnson M, Dickson RB, Lin CY: Matriptase andHAI-1 are expressedby normal andmalignant epithelial cells in vitro andin vivo. Am J Pathol 158: 1301–1311, 2001Google Scholar
  126. 126.
    Tanimoto H, Underwood LJ, Wang Y, Shigemasa K, Parmley TH, O'Brien TJ: Ovarian tumor cells express a transmembrane serine protease: A potential candidate for early diagnosis and therapeutic intervention. Tumour Biol 22: 104–114, 2001Google Scholar
  127. 127.
    Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K, Dickson RB, Lin CY, Taniguchi N: Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1–6 GlcNAc-branching. J Biol Chem 277: 16960–16967, 2002Google Scholar
  128. 128.
    Tanimoto H, Yan Y, Clarke J, Korourian S, Shigemasa K, Parmley TH, Parham GP, O'Brien TJ: Hepsin, a cell surface serine protease identified in hepatoma cells, is overexpressedin ovarian cancer. Cancer Res 57: 2884–2887, 1997Google Scholar
  129. 129.
    Magee JA, Araki T, Patil S, Ehrig T, True L, Humphrey PA, Catalona WJ, Watson MA, Milbrandt J: Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res 61: 5692–5696, 2001Google Scholar
  130. 130.
    Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML, Trent JM, Isaacs WB: Human prostate cancer andbenign prostatic hyperplasia: Molecular dissection by gene expression profiling. Cancer Res 61: 4683–4688, 2001Google Scholar
  131. 131.
    Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, Frierson HF, Jr., Hampton GM: Analysis of gene expression identifies candidate markers andpharmac ological targets in prostate cancer. Cancer Res 61: 5974–5978, 2001Google Scholar
  132. 132.
    Stamey TA, Warrington JA, Caldwell MC, Chen Z, Fan Z, Mahadevappa M, McNeal JE, Nolley R, Zhang Z: Molecular genetic profiling of Gleason grade 4/5 prostate cancers comparedto benign prostatic hyperplasia. J Urol 166: 2171–2177, 2001Google Scholar
  133. 133.
    Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM: Delineation of prognostic biomarkers in prostate cancer. Nature 412: 822–826, 2001Google Scholar
  134. 134.
    Vaarala MH, Porvari K, Kyllonen A, Lukkarinen O, Vihko P: The TMPRSS2 gene encoding transmembrane serine protease is overexpressedin a majority of prostate cancer patients: Detection of mutatedTMPRSS2 form in a case of aggressive disease. Int J Cancer 94: 705–710, 2001Google Scholar
  135. 135.
    Shan J, Yuan L, Xiao Q, Chiorazzi N, Budman D, Teichberg S, Xu HP: TSP50, a possible protease in human testes, is activatedin breast cancer epithelial cells. Cancer Res 62: 290–294, 2002Google Scholar
  136. 136.
    Mok SC, Chao J, Skates S, Wong K, Yiu GK, Muto MG, Berkowitz RS, Cramer DW: Prostasin, a potential serum marker for ovarian cancer: Identification through microarray technology. J Natl Cancer Inst 93: 1458–1464, 2001Google Scholar
  137. 137.
    Chen LM, Hodge GB, Guarda LA, Welch JL, Greenberg NM, Chai KX: Down-regulation of prostasin serine protease: A potential invasion suppressor in prostate cancer. Prostate 48: 93–103, 2001Google Scholar
  138. 138.
    Shigemasa K, Underwood LJ, Beard J, Tanimoto H, Ohama K, Parmley TH, O'Brien TJ: Overexpression of testisin, a serine protease expressedby testicular germ cells, in epithelial ovarian tumor cells. J Soc Gynecol Investig 7: 358–362, 2000Google Scholar
  139. 139.
    Cho EG, Kim MG, Kim C, Kim SR, Seong IS, Chung C, Schwartz RH, Park D: N-terminal processing is essential for release of epithin, a mouse type II membrane serine protease. J Biol Chem 276: 44581–44589, 2001Google Scholar
  140. 140.
    LouvardD, Maroux S, Baratti J, Desnuelle P: On the distribution of enterokinase in porcine intestine and on its subcellular localization. Biochim Biophys Acta 309: 127–137, 1973Google Scholar
  141. 141.
    Fonseca P, Light A: The purification andcharacteri zation of bovine enterokinase from membrane fragments in the Membrane anchoredserine proteases 257 duodenal mucosal fluid. J Biol Chem 258: 14516–14520, 1983Google Scholar
  142. 142.
    Wong GW, Li L, Madhusudhan MS, Krilis SA, Gurish MF, Rothenberg ME, Sali A, Stevens RL: Tryptase 4, a new member of the chromosome 17 family of mouse serine proteases. J Biol Chem 276: 20648–20658, 2001Google Scholar
  143. 143.
    Yousef GM, Diamandis EP: The new human tissue kallikrein gene family: Structure, function, andassociation to disease. Endocr Rev 22: 184–204, 2001Google Scholar
  144. 144.
    Clements J, Hooper J, Dong Y, Harvey T: The expanded human kallikrein (KLK) gene family: Genomic organization, tissue-specific expression andpotential functions. Biol Chem 382: 5–14, 2001Google Scholar
  145. 145.
    Koshelnick Y, Ehart M, Stockinger H, Binder BR: Mechanisms of signaling through urokinase receptor and the cellular response. Thromb Haemost 82: 305–311, 1999Google Scholar
  146. 146.
    Aimes RT, Zijlstra A, Hooper JD, Ogbourne SM, Sit M-L, Fuchs S, Gotley DC, Quigley JP, Antalis TM: Endothelial cell serine proteases expressed during vascular morphogenesis andangiogen esis. Thromb Haemost 89: 569–572, 2003Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Sarah Netzel-Arnett
    • 1
  • John D. Hooper
    • 2
  • Roman Szabo
    • 3
  • Edwin L. Madison
    • 4
  • James P. Quigley
    • 2
  • Thomas H. Bugge
    • 3
  • Toni M. Antalis
    • 4
  1. 1.Vascular Biology Department, Jerome H. Holland Laboratory for the Biological SciencesAmerican Red CrossRockvilleUSA
  2. 2.Department of Cell BiologyThe Scripps Research InstituteLa JollaUSA
  3. 3.Proteases and Tissue Remodeling Unit, Oral and Pharyngeal Cancer BranchNational Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaUSA
  4. 4.Department of Molecular BiologyCorvas InternationalSan DiegoUSA

Personalised recommendations