Skip to main content
Log in

Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Despite their common function, centromeric DNA sequences are not conserved between organisms. Most centromeres of animals and plants so far investigated have now been shown to consist of large blocks of tandemly repeated satellite sequences that are embedded in recombination-deficient heterochromatic regions. This central domain of satellite sequences that is postulated to mediate spindle attachment is surrounded by pericentromeric sequences incorporating various classes of repetitive sequences often including retroelements. The centromeric satellite DNA sequences are amongst the most rapidly evolving sequences and pose some fundamental problems of maintaining function. In this overview, we will discuss work on centromeric repetitive sequences in Arabidopsis thaliana and its relatives, and highlight some of the common features that are emerging when analysing closely related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al‐Shehbaz I (1988) The genera of Sisymbridae (Cruciferae, Brassicaceae) in the Southeastern United States. J Arnold Arboretum 69: 213‐237.

    Google Scholar 

  • Appels R, Driscoll C, Peacock WJ (1978) Heterochromatin and highly repeated DNA sequences in rye (Secale cereale). Chromosoma 70: 67‐89.

    Google Scholar 

  • Aragón‐Alcaide L, Miller T, Schwarzacher T, Reader St, Moore G (1996) A cereal centromeric sequence. Chromosoma 105: 261‐268.

    Google Scholar 

  • Baum M, Ngan VK, Clarke L (1994) The centromeric K‐type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol Biol Cell 5: 747‐761.

    Google Scholar 

  • Brandes A, Heslop‐Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T (1997a) Comparative analysis of the chromosomal and genomic organization of Ty1‐copia‐like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33: 11‐21.

    Google Scholar 

  • Brandes A, Thompson H, Dean C, Heslop‐Harrison JS (1997b) Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Res 5: 238‐246.

    Google Scholar 

  • Capesius I (1983) Sequence of the cryptic satellite DNA from the plant Sinapis alba. Biochem Biophys Acta 739: 276‐280.

    Google Scholar 

  • Chaves R, Heslop‐Harrison JS, Guedes‐Pinto H (2000) Centromeric heterochromatin in the cattle rob(1;29) translocation: alpha satellite I sequences, in situ MspI digestion patterns, chromomycin staining and C‐bands. Chromosome Res 8: 621‐626.

    Google Scholar 

  • Clarke L (1990) Centromeres of budding and fission yeasts. Trends Genet 6: 150‐154.

    Google Scholar 

  • Clarke L, Amstutz H, Fishel B, Carbon J (1986) Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA PNAS 83: 8253‐8257.

    Google Scholar 

  • Copenhaver GP, Preuss D (1999) Centromeres in the genomic era: unravelling paradoxes. Curr Opin Plant Biol 2: 104‐108.

    Google Scholar 

  • Copenhaver GP, Browne WE, Preuss D (1998) Assaying genome‐wide recombination and centromere functions with Arabidopsis tetrads. Proc Natl Acad Sci USA 95: 247‐252.

    Google Scholar 

  • Copenhaver GP, Nikel K, Kuomori T et al. (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286: 2468‐2474.

    Google Scholar 

  • Galasso I, Schmidt T, Pignone D, Heslop‐Harrison JS (1995) The molecular cytogenetics of Vigna unguiculata (L.) Walp: the physical organization and characterization of 18s‐5.8s‐25s rRNA genes, 5 s rRNA genes, telomere‐like sequences, and a family of centromeric repetitive DNA sequences. Theor Appl Genet 91: 928‐935.

    Google Scholar 

  • Garrido‐Ramos MA, Jamilena M, Lozano R, Ruiz Rejón C, Ruiz Rejón M (1995) The EcoRI centromeric satellite DNA of the Sparidae family (Pisces, Perciformes) contains a sequence motive common to other vertebrate centromeric satellite DNAs. Cytogenet Cell Genet 71: 345‐351.

    Google Scholar 

  • Gindullis F, Desel C, Galasso I, Schmidt T (2001) The large‐scale organization of the centromeric region in Beta species. Genome Res 11: 253‐265.

    Google Scholar 

  • Greider CW, Autexier C, Avilion AA et al. (1993) Telomeres and telomerase in mortal and immortal cells. In: Heslop‐Harrison JS, Flavell RB, eds. The Chromosome. Oxford: Bios, pp. 115‐125.

    Google Scholar 

  • Grellet F, Delcasso D, Panabieres F, Delseny M (1986) Organization and evolution of a higher plant alphoid‐like satellite DNA sequence. J Mol Biol 187: 495‐507.

    Google Scholar 

  • Gupta V, Jagannathan V, Lakshmikumaran MS (1990) A novel AT‐rich tandem repeat of Brassica nigra. Plant Sci 68: 223‐229.

    Google Scholar 

  • Halldén C, Bryngelsson T, Säll T, Gustafsson M (1987) Distribution and evolution of a tandemly repeated DNA sequence in the family Brassicaceae. J Mol Evol 25: 318‐323.

    Google Scholar 

  • Halverson D, Baum M, Stryker J, Clarke L (1997) Centromere DNa‐binding protein from fission yeast affects chromosome segregation and has homology to human CENP‐B. J Cell Biol 136: 487‐500.

    Google Scholar 

  • Harrison GE, Heslop‐Harrison JS (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor Appl Genet 90: 157‐165.

    Google Scholar 

  • Haupt W, Fischer TC, Winderl S, Fransz P, Torres‐Ruiz RA (2001) The CENTROMERE1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. Plant J 27: 285‐296.

    Google Scholar 

  • Henikoff S, Ahmed KI, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 292: 1098‐1102.

    Google Scholar 

  • Heslop‐Harrison JS (2000) Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12: 617‐635.

    Google Scholar 

  • Heslop‐Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F (1999) Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis thaliana chromosomes. Plant Cell 11: 31‐42.

    Google Scholar 

  • Hudakova S, Michalek W, Presting GG et al. (2001) Sequence organization of barley centromeres. Nucl Acids Res 29: 5029‐5035.

    Google Scholar 

  • Huxley C (1997) Mammalian artificial chromosomes and chromosome transgenics. Trends Gen 13: 345‐347.

    Google Scholar 

  • Iwabuchi M, Itoh K, Shimamoto K (1991) Molecular and cytological characterization of repetitive DNA sequences in Brassica. Theor Appl Genet 81: 349‐355.

    Google Scholar 

  • Kamm A, Schmidt T, Heslop‐Harrison JS (1994) Molecular and physical organization of highly repetitive, undermethylated DNA from Pennisetum glaucum. Mol Gen Genet 244: 420‐425.

    Google Scholar 

  • Kamm A, Galasso I, Schmidt T, Heslop‐Harrison JS (1995) Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol 27: 853‐862.

    Google Scholar 

  • Kipling D, Warburton PE (1997) Centromeres, CENP‐B and Tigger too. Trends Gen 13: 141‐145.

    Google Scholar 

  • Kishii M, Nagaki K, Tsujimoto H (2001) A tandem repetitive sequence located in the centromeric region of common wheat (Triticum aestivum) chromosomes. Chromosome Res 9: 417‐428.

    Google Scholar 

  • Koch M, Bishop J, Mitchell‐Olds T (1999) Molecular systematics of Arabidopsis and Arabis. Plant Biol 1: 529‐537.

    Google Scholar 

  • Lagercrantz U, Lydiate D (1996) Comparative genome mapping in Brassica. Genetics 144: 1903‐1910.

    Google Scholar 

  • Lo AWI, Craig JM, Saffery R et al. (2001) A 330 kb CENP‐A binding domain and altered replication timing at a human neocentromere. EMBO J 20: 2087‐2096.

    Google Scholar 

  • Maluszynska J, Heslop‐Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J 1: 159‐166.

    Google Scholar 

  • Manzanero S, Puertas MJ, Jimenez G, Vega JM (2000) Neocentric activity of rye 5RL chromosome in wheat. Chromosome Res 8: 543‐554.

    Google Scholar 

  • Martinez‐Zapater JM, Estelle MA, Somerville CR (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204: 417‐423.

    Google Scholar 

  • Murata M (2002) Telomeres and centromeres. Curr Genomics 3: 527‐538.

    Google Scholar 

  • Murata M, Ogura Y, Motoyoshi F (1994) Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet 69: 361‐370.

    Google Scholar 

  • O'Kane SL, AlShehbaz IA (1997) A synopsis of Arabidopsis (Brassicaceae). NOVON 7: 323‐327.

    Google Scholar 

  • Pélissier T, Tutois S, Tourmente S, Deragon JM, Picard G (1996) DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica 97: 141‐151.

    Google Scholar 

  • PHYLIP (2002) PHYLogeny Inference Package, consisting of 34 programs. http://evolution.gs.washington.edu/phylip.html.

  • Pluta AF, Mackay AM, Ainsztein AM, Goldberg IG, Earnshaw WC (1995) The centromere: Hub of chromosomal activities. Science 270: 1591‐1594.

    Google Scholar 

  • Polizzi C, Clarke L (1991) The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function. J Cell Biol 112: 191‐201.

    Google Scholar 

  • Presting GG, Malysheva L, Fuchs J, Schubert IZ (1998) A TY3/GYPSY retrotransposon‐like sequence localizes to the centromeric regions of cereal chromosomes. Plant J 16: 721‐728.

    Google Scholar 

  • Preuss D, Copenhaver G, Keith K (2000) The Arabidopsis centromeres: from DNA sequence to function. Mol Biol Cell 11: 735.

    Google Scholar 

  • Price RA, Palmer JD, Al‐Shehbaz IA (1994) Systematic relationships of Arabidopsis: A molecular and morphological perspective. In: Arabidopsis. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 7‐19.

    Google Scholar 

  • Reddy AS, Srivastava V, Guha‐Mukherjee S (1989) A tandemly repeated DNA sequence from Brassica juncea. Nucl Acids Res 17: 5849.

    Google Scholar 

  • Schmidt TJ, Heslop‐Harrison JS (1996a). The physical and genomic organization of microsatellites in sugar beet. Proc Natl Acad Sci USA 93: 8761‐8765.

    Google Scholar 

  • Schmidt T, Heslop‐Harrison JS (1996b) High‐resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. Plant Mol Biol 30: 1099‐1114.

    Google Scholar 

  • Schwarzacher T, Heslop‐Harrison JS (2000) Practical In Situ Hybridization. Oxford: Bios, 203 pp.

    Google Scholar 

  • Simoens CR, Gielen J, Van Montagu M, Inzé D (1988) Characterization of highly repetitive sequences of Arabidopsis thaliana. Nucl Acids Res 16: 6753‐6766.

    Google Scholar 

  • Singer M (1982) Highly repeated sequences in mammalian genomes. Inter Rev Cytol 76: 67‐112.

    Google Scholar 

  • Smit AFA, Riggs AD (1996) Tiggers and other DNA transposon fossils in the human genome. Proc Natl Acad Sci 93: 1443‐1448.

    Google Scholar 

  • Sugimoto K, Shibata A, Himeno M (1998) Nucleotide specificity at the boundary and size requirement of the target sites recognized by human centromere protein B (CENP‐B) in vitro. Chromosome Res 6: 133‐140.

    Google Scholar 

  • Sun XP, Wahlstrom J, Karpen G (1997) Molecular structure of a functional Drosophila centromere. Cell 91: 1007‐1019.

    Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14(5): 1053‐1066.

    Google Scholar 

  • ten Hoopen R, Schleker T, Manteuffel R, Schubert I (2002) Transient CENP‐E‐like kinetochore proteins in plants. Chromosome Res. 10: 561‐570.

    Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the ?owering plant Arabidopsis thaliana. Nature 408: 796‐815.

    Google Scholar 

  • Thompson H, Schmidt R, Brandes A, Heslop‐Harrison JS, Dean C (1996) A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol Gen Genet 253: 247‐252.

    Google Scholar 

  • Vershinin AV, Heslop‐Harrison JS (1998) Comparative analysis of the nucleosomal structure of rye, wheat and their relatives. Plant Mol Biol 36: 149‐161.

    Google Scholar 

  • Vershinin AV, Schwarzacher T, Heslop‐Harrison JS (1995) The large scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7: 1823‐1833.

    Google Scholar 

  • Vershinin AV, Druka A, Alkhimova AG, Kleinhofs A, Heslop‐Harrison JS (2002) LINEs and gypsy‐like retrotransposons in Hordeum species. Plant Mol Biol 49: 1‐14.

    Google Scholar 

  • Wolffe AP (1995) Chromatin: Structure and Function. Academic Press, San Diego.

    Google Scholar 

  • Wolffe AP, Pruss D (1996) Deviant nucleosomes: the functional specialization of chromatin. Trends Genet 12: 58‐62.

    Google Scholar 

  • Wong AKC, Rattner JB (1988) Sequence organization and cytological localization of the minor satellite of mouse. Nucl Acids Res 16: 11645‐11661.

    Google Scholar 

  • Xia X, Selvaraj G, Bertrand H (1993) Structure and evolution of a highly repetitive DNA sequence from Brassica napus. Plant Mol Biol 21: 213‐224.

    Google Scholar 

  • Xia X, Rocha PSCF, Selvaraj G, Bertrand H (1994) Genomic organization of the canrep repetitive DNA in Brassica juncea. Plant Mol Biol 26: 817‐832.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heslop-Harrison, J.S., Brandes, A. & Schwarzacher, T. Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species. Chromosome Res 11, 241–253 (2003). https://doi.org/10.1023/A:1022998709969

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022998709969

Navigation