Skip to main content
Log in

Vital Genes in the Heterochromatin of Chromosomes 2 and 3 of Drosophila Melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Heterochromatin has been traditionally regarded as a genomic wasteland, but in the last three decades extensive genetic and molecular studies have shown that this ubiquitous component of eukaryotic chromosomes may perform important biological functions. In D. melanogaster, about 30 genes that are essential for viability and/or fertility have been mapped to the heterochromatin of the major autosomes. Thus far, the known essential genes exhibit a peculiar molecular organization. They consist of single-copy exons, while their introns are comprised mainly of degenerate transposons. Moreover, about one hundred predicted genes that escaped previous genetic analyses have been associated with the proximal regions of chromosome arms but it remains to be determined how many of these genes are actually located within the heterochromatin. In this overview, we present available data on the mapping, molecular organization and function of known vital genes embedded in the heterochromatin of chromosomes 2 and 3. Repetitive loci, such as Responder and the ABO elements, which are also located in the heterochromatin of chromosome 2, are not discussed here because they have been reviewed in detail elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M.D., S.E. Celniker, R.A. Holt, C.A. Evans, J.D. Gocayne, P.G. Amanatides, S.E. Scherer, P.W. Li et al., 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185-2195.

    Google Scholar 

  • Berghella, L. & P. Dimitri, 1996. The heterochromatic rolled gene of Drosophila melanogaster is extensively polytenized and transcriptionally active in the salivary gland chromocenter. Genetics 144: 117–125.

    Google Scholar 

  • Biggs, H.W., H.K. Zavitz, B. Dikinson, A. Van Der Straten, D. Brunner, E. Hafen & L.S. Zipursky, 1994. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J. 13: 1628-1635.

    Google Scholar 

  • Busseau, I., M.C. Chaboissier, A. Pelisson & A. Bucheton, 1994. I factors in Drosophila melanogaster: transposition under control. Genetica 93: 101–116.

    Google Scholar 

  • Carmena, M. & C. Gonzales, 1995. Transposable elements map in a conserved pattern distribution extending from betaheterochromatin to centromeres in Drosophila melanogaster. Chromosoma 103: 676–684.

    Google Scholar 

  • De la Vega, H., C.A. Specht, Y. Liu & P.W. Robbins, 1998. Chitinases are a multi-gene family in Aedes, Anopheles and Drosophila. Insect Mol. Biol. 7: 233–239.

    Google Scholar 

  • Dej, K. & A. Spradling, 1997. A heterochromatic ribosomal protein gene is specifically required during oogenesis to maintain nurse cell chromosome organization. A. Dros. Res. Conf. 38: 8B.

    Google Scholar 

  • Devlin, R.H., B. Bingham & B.T. Wakimoto, 1990. The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics 125: 129–140.

    Google Scholar 

  • Dimitri, P., 1991. Cytogenetic analysis of the second chromosome heterochromatin of Drosophila melanogaster. Genetics 127: 553–564.

    Google Scholar 

  • Dimitri, P., 1997. Constitutive heterochromatin and transposable elements in Drosophila melanogaster. Genetica 100: 85–93.

    Google Scholar 

  • Dimitri, P., B. Arca`, L. Berghella & E. Mei, 1997. High genetic instability of heterochromatin after transposition of the LINE-like I factor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94: 8052-8057.

    Google Scholar 

  • Eberl, D., B.J. Duyf & A.H. Hilliker, 1993. The role of heterochromatin in the expression of a hetero-chromatic gene, the rolled gene of Drosophila melanogaster. Genetics 134: 277–292.

    Google Scholar 

  • Eisen, A., M. Sattah, T. Gazitt, K. Neal, P. Szauter et al., 1998. A novel DEAD-box RNA helicase exhibits high sequence conservation from yeast to humans. Biochim. Biophys. Acta 1397: 131–136.

    Google Scholar 

  • Eissemberg, J.C. & A.J. Hilliker, 2000. Versatility of conviction: heterochromatin as both repressor and an activator of transcription. Genetica 109: 19–24.

    Google Scholar 

  • Elgin, S.C.R., 1996. Heterochromatin and gene regulation in Drosophila. Curr. Opin. Genet. Dev. 6: 193–202.

    Google Scholar 

  • Gates, J. & C.S. Thummel, 2000. An enhancer trap screen for ecdysone-inducible genes required for Drosophila adult leg morphogenesis. Genetics 156: 1765-1776.

    Google Scholar 

  • Gatti, M. & B.S. Baker, 1989. Genes controlling essential cell-cycle functions in Drosophila melanogaster. Gene. Dev. 3: 438–453.

    Google Scholar 

  • Gatti, M. & S. Pimpinelli, 1992. Functional elements in Drosophila melanogaster heterochromatin. Ann. Rev. Genet. 26: 239–275.

    Google Scholar 

  • Grewal, S.I. & S.C. Elgin, 2002. Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12: 178–187.

    Google Scholar 

  • Hanai, S., M. Uchida, S. Kobayashi, M. Miwa & K. Uchida, 1998. Genomic organization of Drosophila Poly(ADP-ribose) Polymerase and distribution of its mRNA during development. J. Biol. Chem. 273: 11881-11886.

    Google Scholar 

  • Hilliker, A.J., 1976. Genetic analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster. Deficiency mapping of EMS-induced lethal complementation groups. Genetics 83: 765–782.

    Google Scholar 

  • Inoue, Y.H. & D.M. Glover, 1998. Involvement of the rolled/MAP kinase gene in Drosophila mitosis: interaction between genes for theMAP kinase cascade and abnormal spindle. Mol. Gen. Genet. 258: 334–341.

    Google Scholar 

  • Kay, M.A., J.-Y. Zhang & M. Jacobs-Lorena, 1988. Identification and germline transformation of the ribosomal protein rp21 gene of Drosophila melanogaster: complementation analysis with the Minute QIII locus reveals nonidentity. Mol. Gen. Genet. 213: 354–358.

    Google Scholar 

  • Kelly, Z.E., A.M. Phillips, M. Delbridge & R. Stewart, 1977. Identification of a gene family from Drosophila melanogaster encoding proteins with homology to invertebrate sarcoplasmic calcium-binding proteins (SCPS). Insect Biochem. Molec. 27: 783–792.

    Google Scholar 

  • Koryakov, D.E., I.F. Zhimulev & P. Dimitri, 2002. Cytogenetic analysis of the third chromosome heterochromatin of Drosophila melanogaster. Genetics 160: 509–517.

    Google Scholar 

  • Lu, B.Y., P.C. Emtage, B.J. Duyf, A.J. Hilliker & J.C. Eissenberg, 2000. Heterochromatin protein 1 is required for the normal expression of two heterochromatin genes in Drosophila. Genetics 155: 699–708.

    Google Scholar 

  • McKee, B.D., 1998. Pairing sites and the role of chromosome pairing in meiosis and spermatogenesis in male Drosophila. Curr. Top. Dev. Biol. 37: 77–115.

    Google Scholar 

  • Nichols, R., S.A. Schneuwly & J.E. Dixon, 1988. Identification and characterization of a Drosophila homologue to the vertebrate neuropeptide cholecystokinin. J. Biol. Chem. 263: 12167-12179.

    Google Scholar 

  • Oda, H., T. Uemura, K. Shiomi, A. Nagafuchi, S. Tsukita & M. Tekeichi, 1993. Identification of a Drosophila homologue of α-Catenin and its association with the ARMADILLO protein. J. Cell. Biol. 121: 1133-1140.

    Google Scholar 

  • Parks, S. & E. Wieschaus, 1991. The Drosophila gastrulation gene concertina encodes a G alpha-like protein. Cell. 64(2): 447–458.

    Google Scholar 

  • Pimpinelli S. & P. Dimitri, 1989. Cytogenetic organization of the Rsp (Responder) locus in Drosophila melanogaster. Genetics 121: 765–772.

    Google Scholar 

  • Pimpinelli S., M. Berloco, L. Fanti, P. Dimitri, S. Bonaccorsi, E. Marchetti, R. Caizzi, C. Caggese & M. Gatti, 1995. Transposable elements are stable components of Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA 92: 3804-3808.

    Google Scholar 

  • Rollins, A.R., P. Morcillo & D. Dorsett, 1999. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152: 577–593.

    Google Scholar 

  • Roseman, R.R., E.A. Johnson, C.K. Rodesch, M. Bjerke, R.N. Nagoshi & P.K. Geyer, 1995. A P element containing suppressor of Hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. Genetics 141: 1061-1074.

    Google Scholar 

  • Schulze, S., D.A. Sinclair, E. Silva, K.A. Fitzpatrick, M. Singh, V.K. Lloyd, K.A. Morin, J. Kim, D.G. Holm, J.A. Kennison & B.M. Honda, 2001. Essential genes in proximal 3L heterochromatin of Drosophila melanogaster. Mol. Gen. Genet. 264: 782–789.

    Google Scholar 

  • Sinclair, D.A.R., D.T. Suzuky & T.A. Grigliatti, 1981. Genetic and developmental analysis of a temperature-sensitive Minute mutation of Drosophila melanogaster. Genetics 97: 581–606.

    Google Scholar 

  • Spradling, A.C., D. Stern, A. Beaton, E.J. Rhem, T. Laverty, N. Mozden, S. Misra, G.M. Rubin et al., 1999. The Berkeley Drosophila genome project gene disruption project. Single P element insertions mutating 25% of vital Drosophila genes. Genetics 153: 135–177.

    Google Scholar 

  • Sun, F.L., M.H. Cuaycong & S.C. Elgin, 2001. Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin. Mol. Cell. Biol. 21: 2867-2879.

    Google Scholar 

  • Wakimoto, B.T. & M.G. Hearn, 1990. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster. Genetics 125: 141–154.

    Google Scholar 

  • Warner, T.S., D.A. Sinclair, K.A. Fitzpatrick, M. Singh, R.H. Devlin & B.M. Honda, 1998. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking. Genome 41: 236–243.

    Google Scholar 

  • Weiler, K.S. & B.T. Wakimoto, 1995. Heterochromatin and gene expression in Drosophila. Ann. Rev. Genet. 29: 577–605.

    Google Scholar 

  • Zhang, P. & A.C. Spradling, 1994. Insertional mutagenesis of Drosophila heterochromatin with single P elements. Proc. Natl. Acad. Sci. USA 91: 3539-3543.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitri, P., Corradini, N., Rossi, F. et al. Vital Genes in the Heterochromatin of Chromosomes 2 and 3 of Drosophila Melanogaster . Genetica 117, 209–215 (2003). https://doi.org/10.1023/A:1022996112742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022996112742

Navigation