Skip to main content
Log in

Feature-Based Image Analysis

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

According to Marr's paradigm of computational vision the first process is an extraction of relevant features. The goal of this paper is to quantify and characterize the information carried by features using image-structure measured at feature-points to reconstruct images. In this way, we indirectly evaluate the concept of feature-based image analysis. The main conclusions are that (i) a reasonably low number of features characterize the image to such a high degree, that visually appealing reconstructions are possible, (ii) different feature-types complement each other and all carry important information. The strategy is to define metamery classes of images and examine the information content of a canonical least informative representative of this class. Algorithms for identifying these are given. Finally, feature detectors localizing the most informative points relative to different complexity measures derived from models of natural image statistics, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, L., Guichard, F., Lions, P.L., and Morel, J.M. 1993. Axioms and fundamental equations of image processing: Multiscale analysis and p.d.e. Arch. for Rational Mechanics, 123(3):199–257.

    Google Scholar 

  • Chan, T., Blomgren, P., Mulet, P., and Wong, C.K. 1997. Total variation image restoration: Numerical methods and extensions. In ICIP97, pp. III:384–xx.

  • Daugman, J.G. 1985. Uncertainty relations for resolution in space, spatial frequency, and orientation optimized by two-demensional visual cortical filters. Journal of the Optical Society of AmericaA, 1160–1169.

  • Field, D.J. 1987. Relations between the statistics of natural images and the response proporties of cortical cells. J. Optic. Soc. Am., 4(12):2379–2394.

    Google Scholar 

  • Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., and Viergever, M.A. 1993. Cartesian differential invariants in scalespace. Journal of Mathematical Imaging and Vision, 3(4):327– 348.

    Google Scholar 

  • Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., and Viergever, M.A. 1990. Differential invariants in scale-space. Technical Report 90-20, Computer Vision Research Group (3DCV), Utrecht Biophysics Research Institute (UBI).

  • Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., and Viergever, M.A. 1992. Scale and the differential structure of images. Image and Vision Computing, 10(6):376–388.

    Google Scholar 

  • Fox, C. 1987. An Introduction to the Calculus of Variations. Dover Press: NY.

    Google Scholar 

  • Golub, G.H. and Van Loan, C.F. 1989. Matrix Computations, 2nd edn. Johns Hopkins Press: Baltimore, MD.

    Google Scholar 

  • Griffin, L.D. 2000. Mean, median and mode filtering of images. Proceedings of the Royal Society A, 456(2004):2995–3004.

    Google Scholar 

  • Griffin, L.D. 2002. Local image structure, metamerism, norms, and natural image statistics. Perception, 31(3).

  • Harris, C. and Stephens, M.J. 1988. A combined corner and edge detector. In Alvey88, pp. 147–152.

  • Huang, J., Lee, A.B., and Mumford, D. 2000. Statistics of range images. In CVPR00, pp. I:324–331.

  • Huang, J. and Mumford, D. 1999. Statistics of natural images and models. In CVPR99, pp. I:541–547.

  • Huang, T.S. and Netravali, A.N. 1994. Motion and structure from feature correspondences: A review. PIEEE, 82(2):252–268.

    Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. 1968. Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195:215–243.

    Google Scholar 

  • Hummel, R.A. and Moniot, R. 1989. Reconstructions from zerocrossings in scale-space. ASSP, 37(12):2111–2130.

    Google Scholar 

  • Johansen, P. 1994. On the classification of top points in scale-space. JMIV, 4:57–67.

    Google Scholar 

  • Johansen, P., Nielsen, M., and Olsen, O.F. 2000. Branch points in one-dimensional gaussian scale space. JMIV, 13(3):193–203.

    Google Scholar 

  • Jones, D.G. and Malik, J. 1992. Computational framework for determining stereo correspondence from a set of linear spatial filters. IVC, 10:699–708.

    Google Scholar 

  • Jones, J.P. and Palmer, L.A. 1987. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6):1233–1258.

    Google Scholar 

  • Kass, M. 1988. Linear image features in stereopsis. IJCV, 1(4):357– 368.

    Google Scholar 

  • Koenderink, J.J. 1984. The structure of images. BioCyber, 50:363– 370.

    Google Scholar 

  • Koenderink, J.J. and van Doorn, A.J. 1990. Receptive-field families. Biological Cybernetics, 63(4):291–297.

    Google Scholar 

  • Koenderink, J.J. and van Doorn, A.J. 1996. Metamerism in complete sets of image operators. In Advances in Image Understading '96, pp. 113–129.

  • Lee, A.B., Mumford, D., and Huang, J. 2001. Occlusion models for natural images: A statistical study of a scale-invariant dead leaves model. IJCV, 41(1/2):35–59.

    Google Scholar 

  • Lindeberg, T. 1993. On scale selection for differential operators. In ISRN KTH.

  • Lindeberg, T. 1994. Scale-space Theory in Computer Vision. Kluwer Academic Press: Boston, MA.

    Google Scholar 

  • Lindeberg, T. 1996. Edge detection and ridge detection with automatic scale selection. In CVPR.

  • Lindeberg, T. 1998. Feature detection with automatic scale selection. IJCV, 30(2):79–116.

    Google Scholar 

  • Maintz, J.B.A., van den Elsen, P.A., and Viergever, M.A. 1995. Comparison of feature-based matching of ct and mr brain images. In CVRMed95.

  • Majer, P. 2001. The influence of the g-parameter on feature detection with automatic scale selection. In M. Kerckhove (Ed.), ScaleSpace01, Vol. 2106 in LNCS. Springer: Berlin.

    Google Scholar 

  • Marr, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman: San Francisco, CA.

    Google Scholar 

  • Nielsen, M. 1995. From paradigm to algorithms in computer vision. Ph.D. thesis, Datalogisk Institut Kopenhagen University, Denmark, Dept. of Computer Science, Universitetsparken 1, DK-2100 Kopenhagen 0, Denmark.

    Google Scholar 

  • Nielsen, M. and Lillholm, M. 2001. What do features tell about images? In M. Kerckhove (Ed.), ScaleSpace01, Vol. 2106 in LNCS. Springer, pp. 39–50.

  • Pedersen, K.S. and Nielsen, M. 2000. The hausdorff dimension and scale-space normalization of natural images. JVCIR, 11(2):266– 277.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. 1993. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press: Cambridge, UK.

    Google Scholar 

  • Price, K.E. 1990. Multi-frame feature-based motion analysis. In ICPR90, vol–I, pp. 114–118.

    Google Scholar 

  • Rissanen, J. 1998. Stochastic Complexity in Statistical Inquiry, 2nd edn. World Scientific Press: Singapore.

    Google Scholar 

  • Rosen, J.B. 1960. The gradient projection method for nonlinear programming.Part I. Linear constraints. SIAM, 8(1):181–217.

    Google Scholar 

  • Ruderman, D.L. and Bialek, W. 1994. Statistics of natural images: Scaling in the woods. Physical Review Letters, 73(6):100–105.

    Google Scholar 

  • Rudin, L.I., Osher, S., and Fatemi, E. 1992. Nonlinear total variation based noise removal algorithms. Physica D, pp. 259–268.

  • Schmid, C. and Mohr, R. 1997. Local grayvalue invariants for image retrieval. PAMI, 19(5):530–535.

    Google Scholar 

  • Shannon, C.E. 1948. A mathematical theory of communication. Bell System Technical Journal, 27:379–423 and 623–656.

    Google Scholar 

  • Strong, D.M. and Chan, T.F. 1986. Exact solutions to the total variation regularization problem. Technical Report, UCLA Department of Mathematics.

  • Tagliati, E. and Griffin, L.D. 2001. Features in scale space: Progress on the 2D 2nd order jet. In M. Kerckhove (Eds.), Scale-Space 01, Vol. 2106 in LNCS. Springer, pp. 51– 62.

  • Tikhonov, A.N. and Arsenin, V.Y. 1977. Solution of Ill-Posed Problems. Winston and Wiley: Washington, DC.

    Google Scholar 

  • van Hateren, J.H. and van der Schaaf, A. 1998. Independent components filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc.: Lond. B, 265:359– 366.

    Google Scholar 

  • Vogel, C.R. and Oman, M.E. 1996. Iterative methods for total variation denoising. SIAM Journal on Scientific Computing, 17(1):227– 238.

    Google Scholar 

  • Weickert, J. 1998. Anisotropic Diffusion in Image Processing. Teubner-Verlag.

  • Wells, W.M. III. 1997. Statistical approaches to feature-based object recognition. IJCV, 21(1/2):63–98.

    Google Scholar 

  • Young, R.A. 1985. The Gaussian derivative theory of spatial vision: Analysis of cortical receptive field line-weighting profiles. Gen. Motors Res. Tech. Rep, GMR-4920.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lillholm, M., Nielsen, M. & Griffin, L.D. Feature-Based Image Analysis. International Journal of Computer Vision 52, 73–95 (2003). https://doi.org/10.1023/A:1022995822531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022995822531

Navigation