Skip to main content
Log in

Estimating oxygen exchange across the air–water interface of a hypereutrophic lake

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Patterns of estimates of oxygen flux (J) across the air–water interface of hypereutrophic Onondaga Lake, NY, U.S.A., are characterized for time scales ranging from diel to seasonal for an 8-month period. The analysis is supported by a high frequency (most often hourly) monitoring program, conducted with a robotic buoy, that included measurements of dissolved oxygen (DO), temperature, and fluorometric chlorophyll a in the lake's surface waters, vertical profiles of DO through the epilimnion, and wind speed and solar radiance. The magnitude and direction of J is demonstrated to vary dramatically at diel, day-to-day, and seasonal time scales. Thus, large errors in estimates of J may result from extrapolating flux calculations made from short-term data to longer time periods. The variations in J were driven by variations in metabolic activity and meteorology, and were mediated by departures from equilibrium DO concentrations and wind-driven turbulence. Extended periods of high J values are shown to coincide with intervals of large departures from equilibrium DO concentrations, but day-to-day differences are driven mostly by variations in wind. A distinct diel pattern of J estimates is manifested for average conditions, with substantially higher J values during daylight hours. This pattern reflects the common diel patterns of the drivers of both higher DO oversaturation and wind speed over those hours. It is demonstrated that the magnitude of J is substantial relative to net changes in the epilimnetic DO pool, and thus must be accommodated accurately in estimates of primary production and community respiration that are to be based on diel monitoring of DO in the water columns of productive lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (American Public Health Association), 1992. Standard Methods for the Examination ofWater andWastewater, 18th edn. American Public Health Association, Washington, DC.

    Google Scholar 

  • Addess, J. M. & S.W. Effler, 1996. Summer methane fluxes and fall oxygen resources of Onondaga Lake, New York. Lake Reserv. Manage. 12: 91–101.

    Google Scholar 

  • Auer, M. T. & S. W. Effler, 1989. Variability in photosynthesis: impact on DO models. J. Environ. Engrg. Div. ASCE 115: 944–963.

    Google Scholar 

  • Auer, M. T., M. L. Storey, S. W. Effler & N. A. Auer, 1990. Zooplankton impacts on chlorophyll and transparency in Onondaga Lake, NY. U.S.A. Hydrobiologia/Dev 200/201: 603–617.

    Google Scholar 

  • Banks, R. B. & F. F. Herrera, 1977. Effect of wind and rain on surface reaeration. J. Environ. Engrg. Div. ASCE 103: 489–504.

    Google Scholar 

  • Bella, D. A., 1970. Dissolved oxygen variations in stratified lakes. J. Sanitary Engrg. Div., ASCE 96: 1129–1146.

    Google Scholar 

  • Bowie, G. L., W. B. Milles, D. B. Porcella, C. L. Campbell, J. R. Pagenkopf, G. L. Rupp, K. M. Johnson, P. W. Chan, S. A. Gherini & C. E. Chamberlin, 1985. Rates, Constants, and Kinetic Formulations in Surface Water Quality Modeling (2nd Edition). EPA/600/3-85/040, United States Environmental Protection Agency, Environmental Research Laboratory, Athens, GA 30613.

    Google Scholar 

  • Bretts, K. S., 1998. Technology Update – All-weather water quality monitor. Environ. Sci. Technol. 32: 85.

    Google Scholar 

  • Broecker, W. S., T.-H. Peng, G. Mathieu, R. H. Hesslein & T. Torgersen, 1980. Gas exchange rate measurements in natural systems. Radiocarbon 22: 676–683.

    Google Scholar 

  • Chapra, S. C., 1997. Surface Water-Quality Modeling. McGraw-Hill, New York: 844 pp.

    Google Scholar 

  • Cole, G. A., 1994. Textbook of Limnology. Waveland Press, Prospect Heights, IL.: 412 pp.

    Google Scholar 

  • Cole, T. M. & S. A. Wells, 2000. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.0. U.S. Army Corps of Engineers, Washington, DC.

    Google Scholar 

  • Connors, S. D., M. T. Auer & S.W. Effler, 1996. Phosphorus pools, alkaline phosphatase activity, and phosphorus limitation in hypereutrophic Onondaga Lake, NY. Lake Reserv. Manage. 12: 47–57.

    Google Scholar 

  • Daniil, E. I. & J. S. Gulliver, 1991. Influence of waves on air–water gas transfer. J. Environ. Engrg. Div. ASCE 117: 522–540.

    Google Scholar 

  • Doerr, S. M., S. W. Effler & E. M. Owens, 1996. Forecasting impacts of a hypolimnetic wastewater discharge on lake water quality. Lake Reserv. Manage. 12: 207–217.

    Google Scholar 

  • Effler, S. W., 1996. Limnological and Engineering Analysis of a Polluted Urban Lake. Prelude to Environmental Management of Onondaga Lake, New York. Springer-Verlag, New York, NY.

    Google Scholar 

  • Effler, S. W., C. M. Brooks & K. A. Whitehead, 1996. Domestic waste inputs of nitrogen and phosphorus to Onondaga Lake, and water quality implications. Lake Reserv. Manage. 12: 127–140.

    Google Scholar 

  • Effler, S. W., J. P. Hassett, M. T. Auer & N. A. Johnson, 1988. Depletion of epilimnetic oxygen, and accumulation of hydrogen sulfide in the hypolimnion of Onondaga Lake, NY, U.S.A. Water Air Soil Pollut. 39: 59–74.

    Google Scholar 

  • Effler, S.W., D. M. O'Donnell & C. J. Owen, 2002. America's most polluted lake: Monitoring rehabilitation with computer-driven robots. J. Urban Technol. 9: 21–44.

    Google Scholar 

  • Gelda, R. K. & M. T. Auer, 1996. Development and testing of a dissolved oxygen model for a hypereutrophic lake. Lake Reserv. Manage. 12: 165–179.

    Google Scholar 

  • Gelda, R. K., M. T. Auer, S. W. Effler, S. C. Chapra & M. L. Storey, 1996. Determination of reaeration coefficients: A whole lake approach. J. Environ. Engrg. Div. ASCE 122: 269–275.

    Google Scholar 

  • Gelda, R. K., S. W. Effler & S. M. O'Donnell, 2001. Probabilistic model of ammonia and toxicity status for urban lake. J. Water Res. Plan. Manage. 127: 337–347.

    Google Scholar 

  • Lampert, W., W. Fleckner, H. Rai & B. E. Taylor, 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol. Oceanogr. 31: 478–490.

    Google Scholar 

  • Lingeman, R. & S. Vermij, 1980. Estimation of primary productivity in aquatic systems using free oxygen measurements. Wat. Resour. Bull. 16: 745–748.

    Google Scholar 

  • Madsen, J. D., J. A. Bloomfield, J. W. Sutherland, L. W. Eichler & C. W. Boylen, 1996. The aquatic macrophyte community of Onondaga Lake: field survey and plant growth bioassays of lake sediments. Lake Reserv. Manage. 12: 73–79.

    Google Scholar 

  • Martin, J. L. & S. C. McCutcheon, 1999. Hydrodynamics and Transport for Water Quality Modeling. Lewis Publishers, Boca Raton, FL: 794 pp.

    Google Scholar 

  • Matthews, D. A., S. W. Effler, C. M. Matthews (Brooks), C. A. Siegfried & M. E. Spada, 2001. Responses to early stages of rehabilitation: Onondaga Lake, NY. Wat. Environ. Res. 73: 691–703.

    Google Scholar 

  • Munn, R. E., 1976. Atmospheric transport and diffusion on the regional scale. J. Great Lakes Res. 2: 1–20.

    Google Scholar 

  • O'Connor, D. J., 1983. Wind effects on gas-liquid transfer coeffi-cients. J. Environ. Engrg. Div. ASCE 109: 731–752.

    Google Scholar 

  • Owens, E. M. & S. W. Effler, 1989. Changes in stratification in Onondaga Lake, NY. Wat. Resour. Bull. 25: 587–597.

    Google Scholar 

  • Perkins, M. G. & S. W. Effler, 1996. Optical characteristics of Onondaga Lake 1968–1990. Lake Reserv. Manage. 12: 103–113.

    Google Scholar 

  • Rowell, C., 1996. Paleolimnology of Onondaga Lake: the history of anthropogenic impacts on lake water quality. Lake Reserv. Manage. 12: 35–45.

    Google Scholar 

  • Sellers, P., R. H. Hesslein & C. A. Kelly, 1995. Continuous measurement of CO2 for estimation of air–water fluxes in lakes: an in situ technique. Limnol. Oceanogr. 40: 575–581.

    Google Scholar 

  • Siegfried, C. A., N. A. Auer & S. W. Effler, 1996. Changes in zooplankton of Onondaga Lake: causes and implications. Lake Reserv. Manage. 12: 59–71.

    Google Scholar 

  • Stauffer, R. E., 1980. Windpower time series above a temperate lake. Limnol. Oceanogr. 25: 513–528.

    Google Scholar 

  • Tango, P. J. & N. H. Ringler, 1996. The role of pollution and external refugia in structuring the Onondaga Lake fish community. Lake Reserv. Manage. 12: 81–90.

    Google Scholar 

  • Thomann, R. V. & J. A. Mueller, 1987. Principles of Surface Water Quality Modeling and Control. Harper & Row Publishers, NY.

    Google Scholar 

  • Vollenweider, R. A., 1974. A Manual on Methods for Measuring Primary Production in Aquatic Environments. 2nd edition. IBP Handbook No. 12. Blackwell Scientific, Oxford, U.K.

    Google Scholar 

  • Wanninkhof, R., J. R. Leduidl & J. Crusius, 1991. Gas transfer velocities on lakes measured with sulfur hexafluoride. In Wilhelms, S. C. & J. S. Gulliver (eds), AirWaterMass Transfer. Symposium volume of the second international conference on gas transfer at water surfaces, Minneapolis, MN: 441–458.

  • Wetzel, R. G., 2001. Limnology: Lake and Reservoir Ecosystems. Academic Press, New York.

    Google Scholar 

  • Wu, J., 1971. Anemometer height and Froude scaling of wind stress. J. Waterways, Harbors, Coastal Engrg. Div. ASCE 97: 131–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven W. Effler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelda, R.K., Effler, S.W. Estimating oxygen exchange across the air–water interface of a hypereutrophic lake. Hydrobiologia 487, 243–254 (2002). https://doi.org/10.1023/A:1022994217578

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022994217578

Navigation