Skip to main content
Log in

Raman Spectroscopy of Iron in Aqueous Carbonate Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman spectroscopy is used for in situ study of an iron surface in aqueous carbonate solutions both on open circuit and at constant potentials. Raman signals are assigned to FeCO3 and adsorbed water. Formation of FeCO3 corresponds to lowering of iron dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. DeWaard and D. E. Milliams, Corrosion 31, 177(1975).

    Google Scholar 

  2. G. Schmidt, in Advances in CO2 Corrosion, Vol. 1 (National Association of Corrosion Engineers, Houston, TX, 1984), pp. 10-19.

    Google Scholar 

  3. A. Ikeda, M. Ueda, and S. Mukai, in Advances CO2 Corrosion, Vol. 1 (National Association of Corrosion Engineers, Houston, TX, 1984), pp. 39-51.

    Google Scholar 

  4. A. K. Dunlop, H. L. Hassell, and P. R. Rhodes, in Advances in CO2 Corrosion, Vol. 1 (National Association of Corrosion Engineers, Houston, TX, 1984), pp. 52-63.

    Google Scholar 

  5. R. H. Hausler, Corrosion Inhibition in the Presence of Corrosion Product Layers, 6th European Conference on Corrosion Inhibitors, Ferrara, Italy, 1985.

  6. J. C. Rubim and J. Dýnnwald, J. Electroanal. Chem. 258, 327(1989).

    Google Scholar 

  7. M. Odziemkowski, J. Flis, and D. E. Irish, Electrochim. Acta 39, 2225(1994).

    Google Scholar 

  8. J. Gui and T. M. Devine, Corros. Sci. 37, 1177(1995).

    Google Scholar 

  9. L. J. Oblonsky, G. R. Chesnut, and T. M. Devine, Corrosion 51, 891(1995).

    Google Scholar 

  10. L. J. Simpson and C. A. Melendres, J. Electrochem. Soc. 143, 2146(1996).

    Google Scholar 

  11. L. J. Oblonsky and T. M. Devine, J. Electrochem. Soc. 144, 1252(1997).

    Google Scholar 

  12. M. S. Odziemkowski, T. T. Schuhmacher, R. W. Gillham, and E. J. Reardon, Corros. Sci. 40, 371(1998).

    Google Scholar 

  13. P. M. L. Bonin, M. Odziemkowski, E. J. Reardon, and R. W. Gillham, J. Solution Chem. 29, 1061(2000).

    Google Scholar 

  14. P. M. L. Bonin, W. Jefral, M. S. Odziemkowski, and R. W. Gillham, Corros. Sci. 42, 1921(2000).

    Google Scholar 

  15. L. LeGrand, G. Sagon, S. Lecomte, A. Chausse, and R. W. Messina, Corros. Sci. 43, 1739(2001).

    Google Scholar 

  16. S. Simard, M. Odziemkowski, D. E. Irish, L. Brossard, and Menard, J. Appl. Electrochem. 31, 913(2001).

    Google Scholar 

  17. D. M. Carey and G. M. Korenowski, J. Chem. Phys. 108, 2669(1998).

    Google Scholar 

  18. G. E. Walrafen and L. A. Blatz, J. Chem. Phys. 59, 2646(1973).

    Google Scholar 

  19. B. Pettinger, M. R. Philpott, and J. G. Gordon, II, J. Chem. Phys. 74, 934(1981).

    Google Scholar 

  20. M. Fleischmann, P. J. Hendra, I. R. Hill, and M. E. Pemble, J. Electroanal. Chem. 117, 243(1981).

    Google Scholar 

  21. M. Fleischmann and I. R. Hill, J. Electroanal. Chem. 146, 367(1983).

    Google Scholar 

  22. M. Fleischmann, P. Graves, I. Hill, A. Oliver, and J. Robinson, J. Electroanal. Chem. 150, 33(1983).

    Google Scholar 

  23. Z. Q. Tian, S. K. Sigalaev, S. Z. Zou, B. W. Mao, A. M. Funtikov, and V. E. Kazarinov, Electrochim. Acta 39, 2195(1994).

    Google Scholar 

  24. Z. Tian, B. Ren, Y. Chen, S. Zou, and B. Mao, J. Chem. Soc. Faraday Trans. 92, 3829(1996).

    Google Scholar 

  25. A. R. Davis and B. G. Oliver, J. Solution Chem. 1, 329(1972).

    Google Scholar 

  26. B. G. Oliver and A. R. Davis, Can. J. Chem. 51, 698(1973).

    Google Scholar 

  27. T. M. Abbott, G. W. Buchanan, P. Kruus, and K. C. Lee, Can. J. Chem. 60, 1000(1982).

    Google Scholar 

  28. H. Falcke and S. H. Eberle, Water Res. 24, 685(1990).

    Google Scholar 

  29. N. Wen and M. H. Brooker, J. Phys. Chem. 99, 359(1995).

    Google Scholar 

  30. J. D. Frantz, Chemical Geol. 152, 211(1998).

    Google Scholar 

  31. M. Perrot, F. Guillaume, and W. G. Rothschild, J. Phys. Chem. 87, 5193(1983).

    Google Scholar 

  32. J. Archambault, A. Lautie, and R. Lefevre, J. Phys., Colloq. (C2), p. 805(1984).

  33. R. G. Herman, C. E. Bogdan, A. J. Sommer, and D. R. Simpson, Appl. Spectrosc. 41, 437(1987).

    Google Scholar 

  34. K. M. Rosso and R. J. Bodnar, Geochim. Cosmochim. Acta 59, 3961(1995).

    Google Scholar 

  35. C. Madic, D. E. Hobart, and G. M. Begun, Inorg. Chem. 22, 1494(1983).

    Google Scholar 

  36. D. B. Langille and D. C. O'Shea, J. Phys. Chem. Solids 38, 1161(1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perkins, R.S., Garber, J.D. Raman Spectroscopy of Iron in Aqueous Carbonate Solutions. Journal of Solution Chemistry 32, 265–272 (2003). https://doi.org/10.1023/A:1022990402530

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022990402530

Navigation