Skip to main content
Log in

Investigation of Sonoluminescence Amplification under the Interaction of Ultrasonic Fields Widely Differing in Frequency

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Abstract

The laws of sonoluminescence generation under the interaction of ultrasonic fields widely differing in frequency have been investigated. It is shown that nonadditive amplification of the sonoluminescence is observed not only under the simultaneous action of the fields on a liquid, but also in a high‐frequency field after preliminary insonification of the liquid by a low‐frequency field. The phenomenon of a long‐duration aftereffect of the low‐frequency field on the cavitation generated by the high‐frequency field has been revealed. On the basis of the obtained results the conclusion has been drawn that the main mechanism of increasing the cavitation activity in the interacting fields is the generation of new cavitation nuclei as a result of the collapse of bubbles excited by the low‐frequency field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. I. Zhuravlev and V. B. Akopyan, Ultrasound Luminescence [in Russian], Moscow (1977).

  2. M. A. Margulis, Sound-Chemical Reactions and Sonoluminescence [in Russian], Moscow (1986).

  3. A. J. Walton and G. T. Reynolds, Adv. Phys., 33, 595-659 (1984).

    Google Scholar 

  4. L. A. Crum, Physics Today, 95, 22-31 (1994).

    Google Scholar 

  5. T. G. Leighton, The Acoustic Bubble, Academic Press, London (1994).

    Google Scholar 

  6. M. A. Margulis, Usp. Fiz. Nauk, 170, No. 3, 263-287 (2000).

    Google Scholar 

  7. D. F. Gaitan, L. A. Crum, C. C. Church, and R. A. Roy, J. Acoust. Soc. Am., 91, 3166-3183 (1992).

    Google Scholar 

  8. B. P. Barber and S. J. Putterman, Nature, 352, 318-320 (1992).

    Google Scholar 

  9. B. P. Barber, R. A. Hiller, R. Lofsted, S. J. Putterman, and K. R. Weninger, Phys. Rep., 281, 65-143 (1997).

    Google Scholar 

  10. G. E. Vazques and S. J. Putterman, Phys. Rev. Lett., 85, 3037-3040 (2000).

    Google Scholar 

  11. W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, Phys. Fluids, 6, 2979-2985 (1996).

    Google Scholar 

  12. C. C. Wu and P. H. Roberts, Phys. Rev. Lett., 70, 3424-3425 (1993).

    Google Scholar 

  13. R. I. Nigmatulin, V. Sh. Shagapov, N. L. Vakhitova, and R. T. Lahey, Dokl. Ross. Akad. Nauk, 341, 37-41 (1995).

    Google Scholar 

  14. M. A. Margulis, Sonochemistry and Cavitation, Gordon and Breach, London (1995).

    Google Scholar 

  15. R. P. Taleyarkhan, C. D. West, J. C. Cho, R. T. Lahey, R. I. Nigmatulin, and R. C. Block, Science, 295, 1868-1873 (2002).

    Google Scholar 

  16. T. J. Matula, R. A. Roy, P. D. Mourad, W. B. McNamara, III, and K. S. Suslick, Phys. Rev. Lett., 75, 2602-2605 (1995).

    Google Scholar 

  17. K. S. Suslick, W. B. McNamara, III, and Yu. T. Didenko, in: W. Lauterborn and T. Kurz (eds.), Nonlinear Acoustics at the Turn of the Millennium, New York (2000), pp. 463-466.

  18. G. J. Gimenez, J. Acoust. Soc. Am., 71, 839-846 (1982).

    Google Scholar 

  19. T. V. Gordeichuk, Yu. T. Didenko, and S. P. Pugach, Acoust. Zh., 42, Issue 11, 274-275 (1996).

    Google Scholar 

  20. M. A. Margulis, Zh. Fiz. Khim., 59, No. 6, 1497-1503 (1985).

    Google Scholar 

  21. I. M. Margulis and M. A. Margulis, Zh. Fiz. Khim., 74, No. 3, 566-547 (2000).

    Google Scholar 

  22. Yu. T. Didenko and T. V. Gordeichuk, Phys. Rev. Lett., 84, No. 24, 5640-5643 (2000).

    Google Scholar 

  23. N. V. Dezhkunov, A. Francescutto, P. Ciuti, T. J. Mason, G. Iernetti, and A. I. Kulak, Ultrasonics Sonochemistry, 7, 19-24 (2000).

    Google Scholar 

  24. N. V. Dezhkunov, A. Francescutto, P. Ciuti, A. I. Kulak, and V. A. Koltovich, in: W. Lauterborn and T. Kurz (eds.), Nonlinear Acoustics at the Turn of the Millennium, New York (2000), pp. 447-451.

  25. N. V. Dezhkunov, A. Francescutto, and P. Ciuti, in: Ext. Abr. of Papers presented at Int. Conf. "Ultrasound Technological Processes-2000" [in Russian], Arkhangel'sk (2000), pp. 77-78.

  26. N. V. Dezhkunov, Pis'ma Zh. Tekh. Fiz., 12, Issue 27, 15-22 (2001).

    Google Scholar 

  27. B. A. Agranat, V. I. Bashkirov, and Yu. I. Kitaigorodskii, Akust. Zh., 13, Issue 2, 283-286 (1967).

    Google Scholar 

  28. R. T. Knapp, J. W. Daily, and F. G. Hammit, Cavitation [Russian translation], Moscow (1974).

  29. N. V. Dezhkunov, G. Iernetti, A. Francescutto, and P. Ciuti, Acustica, 83, No. 1, 119-124 (1997).

    Google Scholar 

  30. A. D. Pernik, Problems of Cavitation [in Russian], Leningrad (1966).

  31. A. K. Evans, Phys. Rev. E, 54, No. 5, 5004-5011 (1996).

    Google Scholar 

  32. I. Akhatov, V. Parlitz, and W. Lauterborn, Phys. Rev. E, 54, No. 5, 4990-5003 (1996).

    Google Scholar 

  33. A. A. Doinikov and S. T. Zavtrak, J. Acoust. Soc. Am., 99, No. 2, 3849-3853 (1986).

    Google Scholar 

  34. K. A. Naugol'nykh, in: I. P. Golyamina (ed.), Ultrasound [in Russian], Moscow (1979), pp. 231-233.

  35. V. A. Akulichev, in: L. D. Rozenberg (ed.), Powerful Ultrasound Fields [in Russian], Moscow (1968), pp. 130-165.

  36. M. G. Sirotyuk, in: L. D. Rozenberg (ed.), Powerful Ultrasound Fields [in Russian], Moscow (1968), pp. 166-220.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dezhkunov, N.V. Investigation of Sonoluminescence Amplification under the Interaction of Ultrasonic Fields Widely Differing in Frequency. Journal of Engineering Physics and Thermophysics 76, 142–150 (2003). https://doi.org/10.1023/A:1022987813280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022987813280

Keywords

Navigation