Skip to main content
Log in

The Importance of Polarity/Polarizability Interaction on the Acidity Behavior of 9,10-Anthraquinone and 9-Anthrone Derivatives in Methanol-Water Mixed Solvents Using Target Factor Analysis and QSPR Approaches

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The influence of solvent properties on acidity constants of some newly synthesized 9,10-anthraquinone and 9-anthrone derivatives was studied in methanol-water mixtures in a composition range of 0.57 to 1.0 methanol mole fraction. The model was established by using both multiple linear regression and target factor analysis. Both methods revealed that the solvent polarity/polarizability parameter π* is a major factor in controlling the acidity behavior of the anthraquinones and anthrones studied in binary methanol-water mixed solvents. A QSPR study was conducted to drive the relationships between the π* coefficient s and the polarity/polarizability of molecules. Both dipole moment and polarizability were found to have a linear relationship with s. The results confirm that, in the dipolar protic solvents used, the dipole-dipole interaction (for neutral molecules) and the ion-dipole interaction (for ionized molecules) are the major factors controlling the acidity behavior of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. H. Zhao, L. H, Yuan, and L. S. Wang, Bull. Environ. Contam. Toxicol. 57, 242(1996).

    Google Scholar 

  2. P. Alines, J. Planar Chromatogr. Mod. TLC 9, 52(1996).

    Google Scholar 

  3. G. H. Rochester, Acidity Functions (Academic Press, New York, 1971)

    Google Scholar 

  4. R. H. Thomson, Naturally Occurring Quinones (Academic Press, New York, 1971)

    Google Scholar 

  5. V. Sarzf and K. Dole, Indian J. Appl. Chem. 22, 146(1990).

    Google Scholar 

  6. F. Aramone, Med. Res. Rev. 14, 153(1984).

    Google Scholar 

  7. E. D. Zanbower, C. M. Kam, J. C. Powers, and L. H. Zalkow, J. Med. Chem. 35, 1597(1992).

    Google Scholar 

  8. M. Shamsipur, J. Ghasemi, F. Tamaddon, and H. Sharghi, Talanta 40, 697(1993).

    Google Scholar 

  9. S. Rouhani, R. Rezaei, H. Sharghi, M. Shamsipur, and G. Rounaghi, Microchem. J. 52, 22(1995).

    Google Scholar 

  10. D. Almasifar, A. Forghaniha, Z. Khojasteh, J. Ghasemi, H. Sharghi, and M. Shamsipur, J. Chem. Eng. Data 42, 1212(1997).

    Google Scholar 

  11. M. R. Fat'hi, Y. Yamini, H. Sharghi, and M. Shamsipur, J. Chem. Eng. Data 43, 400(1998).

    Google Scholar 

  12. M. R. Fat'hi, Y. Yamini, H. Sharghi, and M. Shamsipur, Talanta 48, 951(1999).

    Google Scholar 

  13. A. Salimi, F. Tamaddon, H. Sharghi, M. F. Mousavi, S. M. Golabi, and M. Shamsipur, Polish J. Chem. 22, 2573(1999).

    Google Scholar 

  14. A. Salimi, H. Eshghi, H. Sharghi, S. M. Golabi, and M. Shamsipur, Electroanalysis 11, 114(1999).

    Google Scholar 

  15. A. Salimi, M. F. Mousavi, H. Sharghi, and M. Shamsipur, Bull. Chem. Soc. Jpn. 72, 2005(1999).

    Google Scholar 

  16. S. Dadfarnia, M. Shamsipur, F. Tamaddon, and H. Sharghi, J. Membr. Sci. 78, 115(1993).

    Google Scholar 

  17. N. Tavakkoli, Z. Khojasteh, H. Sharghi, and M. Shamispur, Anal. Chim. Acta 360, 203(1998).

    Google Scholar 

  18. H. R. Pouretedal, A. Forghaniha, H. Sharghi, and M. Shamsipur, Anal. Lett. 31, 2591(1981).

    Google Scholar 

  19. M. Shamsipur, B. Hemmateenejad, M. Akhond, and H. Sharghi, Talanta 54, 1113(2001).

    Google Scholar 

  20. S. Ravisankar, M. Vasudevan, M. Gandhimathi, and B. Suresh, Talanta 46, 1577(1998).

    Google Scholar 

  21. S. Rabouan, P. Prognon, and D. Barthes, Anal. Sci. 15, 1191(1999).

    Google Scholar 

  22. E. Mikami, T. Goto, T. Ohno, H. Matsumoto, and M. Nishida, J. Pharm. Biomed. Anal. 28, 261(2002).

    Google Scholar 

  23. J. Barbosa, V. Sanz-Nebot, and I. Toro, J. Chromatogr. A 725, 249(1996).

    Google Scholar 

  24. D. Barron, J. A. Pascual, J. Segura, and J. Barbosa, Chromatographia 41, 573(1995).

    Google Scholar 

  25. E. Casassas, N. Dominguez, G. Fonrodona, and A. de Juan, Anal. Chim. Acta 283, 548(1993).

    Google Scholar 

  26. J. Barbosa, I. Marques, G. Fonrodona, D. Barron, and R. Berges, Anal. Chim. Acta 347, 385(1997).

    Google Scholar 

  27. R. J. Sindreu, M. L. Moya, F. Sanchez Burgos, and G. Gonzalez, J. Solution Chem. 23, 1101(1994).

    Google Scholar 

  28. J. N. Miller and J. C. Miller, Statistics and chemometrics for Analytical Chemistry (Prentice Hall, London, 2000)

    Google Scholar 

  29. E. R. Malinowski, Factor Analysis in Chemistry Wiley (Interscience), New York, 1991

    Google Scholar 

  30. A. G. Gonzalez and D. Gonzalez-Arjona, Anal. Chim. Acta 312, 295(1995).

    Google Scholar 

  31. R. Aruga, Can J. Chem. 73, 2170(1995).

    Google Scholar 

  32. P. H. Weiner, J. Amer. Chem. Soc. 95, 5845(1973).

    Google Scholar 

  33. E. Casassas, G. Fonrodona, A de Juan, and R Tauler, Chemom. Intell. Lab. System. 12, 29(1991).

    Google Scholar 

  34. R. Aruga, J. Chem. Phys. 89, 1853(1992).

    Google Scholar 

  35. C. Hansch, D. Hoekman, and H. Gao, Chem. Rev. 96, 1045(1996).

    Google Scholar 

  36. J. Devilliers, Naural Networks in QSAR and Drug Design (Academic Press, San Diego, 1996)

    Google Scholar 

  37. A. P. Borosy, K. Keseru, and P. Matyus, Chemom. Intell. Lab. System. 54, 107(2000).

    Google Scholar 

  38. V. N. Viswanadhan, G. A. Mueller, S. C. Basak, and J. N. Weinstein, J. Chem. Inf. Comput. Sci. 41, 505(2001).

    Google Scholar 

  39. M. J. Kamlet, J. J. Aboud, and R. W. Taft, J. Amer. Chem. Soc. 99, 6027(1977).

    Google Scholar 

  40. R. W. Taft and M. J. Kamlet, J. Amer. Chem. Soc. 98, 2886(1976).

    Google Scholar 

  41. M. J. Kamlet and R. W. Taft, J. Amer. Chem. Soc. 98, 377(1976).

    Google Scholar 

  42. C. Reichardt, Angew, Chem., Int. Ed. Engl. 18, 98(1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmateenejad, B., Sharghi, H., Akhond, M. et al. The Importance of Polarity/Polarizability Interaction on the Acidity Behavior of 9,10-Anthraquinone and 9-Anthrone Derivatives in Methanol-Water Mixed Solvents Using Target Factor Analysis and QSPR Approaches. Journal of Solution Chemistry 32, 215–226 (2003). https://doi.org/10.1023/A:1022982200712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022982200712

Navigation